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A multi-step key recovery attack on reduced round 
Salsa and ChaCha

Hirendra Kumar Garai and Sabyasachi Dey     

ABSTRACT 
This paper develops a significantly enhanced attack on the 
ciphers Salsa and ChaCha. The existing attacks against these 
ciphers are mainly differential attacks. In this work, we pro
duce an attack on 7.5-round Salsa and 6.5-round ChaCha20. 
These are the maiden key-recovery attacks on those versions 
of the two ciphers, in which we recover the key in multiple 
steps using several distinguishers. In comparison to the previ
ous best-known attack against 7-round Salsa, the new attack 
method offers an improvement of 27:5 times, while on 
7.5-round Salsa20 and 6.5-round ChaCha20 our attack is the 
only existing one.

KEYWORDS 
ARX; ChaCha; differential 
cryptanalysis; key recovery 
attack; Salsa   

1. Introduction

The world of stream ciphers was lacking trustworthy and efficient ciphers 
in the 2000s. In the search for an efficient yet fast stream cipher, the 
eSTREAM project emerged. In the third-phase selection, eSTREAM vali
dated the Salsa family of ciphers in 2007, which was submitted by Daniel J. 
Bernstein in 2005.

Salsa20/12 was one of seven finalists in the eSTREAM project (2005– 
2008). The Salsa20/20 cipher is appealing for encryption due to its high 
speed and security. In the next year 2018, Bernstein released a newer ver
sion of Salsa—known as ChaCha—by increasing the diffusion in Salsa.

Both Salsa and ChaCha are addition/rotation/XOR (ARX)–based crypto
graphic primitives. Their keystream generation algorithm comprises three 
simple operations: Addition modulo 232 (⊞), constant distance left bit rota
tion (n), and bitwise XOR operation (�). These operations are swift in 
any circuit, and hence the cipher can achieve significant speed with a high 
security margin. Due to their efficient algorithm and fast performance, 
both ciphers have attracted cryptographic analysis since their release. Most 
attacks on these two ciphers are of differential and linear attack.

� 2024 Taylor & Francis Group, LLC
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1.1. Design principles of the Salsa and ChaCha family

The Salsa20 cipher takes a 256-bit key (k), a 128-bit constant (c), and a 
128-bit initial vector (v), or IV, and generates a 512-bit keystream. The key 
is divided into eight 32-bit words (k0, k1, :::, k7). Similarly, the constant and 
the IV are also broken into 32-bit words (c0, c1, c2, c3) and (v0, v1, t0, t1). 
Due to the use of the 256-bit key, the cipher is also called 256-bit Salsa20. 
Inputs are stored in a 4� 4 matrix as follows:

X ¼

X0 X1 X2 X3
X4 X5 X6 X7
X8 X9 X10 X11
X12 X13 X14 X15

0

B
B
@

1

C
C
A ¼

c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

0

B
B
@

1

C
C
A

The round function in Salsa20 is constructed using 4 quarter-round 
functions, each of which is an ARX function. Together, these ARX func
tions form the round function. The quarter-round function takes four 32- 
bit words (x, y, z, w) and updates them to (x0, y0, z0, w0) by calculating the 
following:

y0 ¼ y � ððx⊞wÞ n7Þ;
z0 ¼ z � ððy0⊞xÞ n9Þ;
w0¼ w � ððz0⊞y0Þn13Þ;
x0 ¼ x � ððw0⊞z0Þn18Þ;

(1) 

The Salsa round function can be broken into two parts. The first half of 
the round function is formed using the same 4 quarter-round functions, 
but each quarter-round function is made up of the first two equations of 
(1). In the same way, the second half of the round function is made using 
the quarter-round functions constructed by the last two equations of (1).

In each odd-numbered round, the four columns of the matrix X are 
updated by this quarter-round function; in the even-numbered rounds, this 
function is applied to the rows of the matrix.

In the original Salsa20 cipher, the number of rounds is 20. After the final 
round, the initial state X is added modulo (232) to the updated state X20 

word-by-word, and the keystream (Z) of 512 bits is achieved, that is, 
Z ¼ X⊞X20. This keystream is then bitwise XORed to plaintext to get the 
ciphertext.

One property of this round function is that we can go backward from 
any round r þ 1 to its previous-round r; that is, Xrþ1 can be converted to 
Xr by one reverse Salsa round function (Rev1

S):Rev1
SðXrþ1Þ ¼ Xr: The reverse 

Salsa round function similarly consists of 4 quarter-round functions, each 
of which has ARX operations inside them. For more details, refer to 
Bernstein (2008). The design of ChaCha mimics the Salsa cipher. ChaCha 
also takes an input of 512 bits and processes it to a 512-bit keystream. The 
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input consists of four constants, eight keywords, and four initial vectors. 
Each of them are 32 bits. They are arranged in a 4� 4 matrix that forms 
the initial state:

X ¼

X0 X1 X2 X3
X4 X5 X6 X7
X8 X9 X10 X11
X12 X13 X14 X15

0

B
B
@

1

C
C
A ¼

c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

0

B
B
@

1

C
C
A:

The matrix is then updated by the ChaCha round function, which is 
made up of 4 quarterround functions. Each quarterround function 
transforms a vector (a, b, c, d) to (a00, b00, c00, d00Þ in the following way:

a0 ¼ a ⊞ b; d0 ¼ ððd � a0Þ n16Þ;
c0 ¼ c ⊞ d0; b0 ¼ ððb � c0Þ n12Þ;
a00 ¼ a0 ⊞ b0; d00 ¼ ððd0 � a00Þ n8Þ;
c00 ¼ c0 ⊞ d00; b00 ¼ ððb0 � c00Þ n7Þ;

(2) 

In case of the ChaCha cipher, in the odd-numbered rounds the columns 
are updated; in the even-numbered rounds, the diagonals are updated. In 
the same way as the Salsa cipher, the first half of the ChaCha round func
tions are defined by the quarter-round functions that use the first four 
equations of (2). The second half of the round functions uses the next four 
equations of (2).

After full R ChaCha rounds, the initial state is added to the final state 
and we have the keystream in the matrix form.

Similar to Salsa, the ChaCha round function is also reversible. Further 
details can be found in Bernstein (2008).

Table 1. Notations used in this article.
Symbol Meaning

Salsa20/R Salsa with R-rounds
ChaCha20/R ChaCha with R-rounds
ID Input difference bit
OD Output difference bit
X The initial state matrix consisting of 16 words
X
0

The state matrix after giving difference to X at ID1
X
00

The state matrix after giving difference to X at ID2
Xr The state matrix after r forward Salsa rounds
Revr

S r Reverse Salsa rounds
Xi i-th word of the state matrix X
x ⊞ y Addition of x and y modulo 232

x � y Bitwise XOR of x and y
x n n Left rotation of x by n bits
ða, bÞ The position of b-th bit of the a-th word of the state matrix
Si The set of key bits recovered in i-th stage
Ki Corresponding subkey of Si:
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1.2. Outline and contribution

We have presented here an improved differential attack technique on the 
Salsa and ChaCha ciphers. We used some extra conditions in choosing the 
proper IV, which in turn helps improve the existing attack on Salsa20/7. In 
addition, those choices contributed to the first-ever attack on Salsa20/7.5 
and ChaCha 20/6.5. The attack on Salsa20/7 exploits three (ID −OD) 
pairs. Here we split the entire key into four subkey sets and recover them 
one-by-one. This approach significantly improves the complexity by 27:5 

over the previously existing best attack. The attack on Salsa20/7.5 uses two 
ID −OD s. We also implemented the first-ever attack on ChaCha20/6.5. 
The paper is organized as follows.

� Section 1 discusses the design principles of the Salsa and ChaCha 
ciphers.

� In Section 2, we explain the basic outline of the present attack approach 
on Salsa and ChaCha. In Section 2.1, we report on the existing attacks 
on Salsa and the correction of complexity in one of the works.

� Section 3 describes our multi-step attack on Salsa20/7 in detail. The 
attack consists of a preprocessing phase and an online phase. We dis
cuss them respectively in Subsections 3.2 and 3.3.

� In Section 4, we propose a complexity calculation formula for this 
multi-step attack approach, which is modified from previously existing 
formulas. We consider the probability of false-alarm errors and compute 
their influence on overall complexity. After that, using this formula, we 
compute complexity.

� Sections 5 and 6 address details of the attack on Salsa20/7.5 and 
ChaCha20/6.5.

� Section 7 offers a conclusion.

2. Cryptanalysis of Salsa and ChaCha

The cryptanalytic techniques used on these ciphers are mostly differential 
attacks. In a differential attack, the attacker is assumed to have access to 

Table 2. Complexities of certain previous key recovery attacks on 256-bit Salsa20/7 and our 
results.
Cipher Round Data complexity Time complexity Year Attack

− 2190 2007 [Tsunoo et al. 2007]
7 226 2151 2008 [Aumasson et al. 2008]

Salsa 261 2149 2016 [Choudhuri and Maitra 2016]
2104:47 2125:16 2023 [Coutinho et al. 2023]
296:74 2119:74 2023 [Our work]

7.5 215:54 2163:54 2023 [Our work]
ChaCha 6.5 290:74 2151:74 2023 [Our work]
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the IV. As stated by Maitra (2016), the central idea of these attacks is to 
input differences in the initial state and look for biases in the output. After 
moving forward as described earlier, we can move backward a few rounds 
from the final state to get more non-randomness. In a broad sense, the dif
ferential attack searches for the high-probability occurrences of ciphertext 
differences for certain plaintext differences.

In existing attacks against Salsa, an input difference is given in position 
ði, jÞ (ID) of the initial state X, which creates X0; after running both r Salsa 
rounds forward, the attacker look for some high bias at some bit of the 
output difference matrix Xr�X0r: If such a bias is found at the q-th bit of 
the p-th word, we call this bit (OD). The corresponding bias is called for
ward bias and is denoted by �d: Forward bias can be exploited as a distin
guisher of the cipher. In addition, it is used to recover the key, using the 
concept of probabilistic neutral bits.

2.1. Probabilistic neutral bits

Aumasson et al. (2008) made a major contribution to attacks against the 
Salsa family of ciphers in FSE 2008, in which they introduced the concept 
of probabilistic neutral bits. In Salsa20/R, the design principle makes clear 
that from the final output keystream Z, if we subtract the initial state 
matrix X (modulo 232), we achieve the final state XR: From there, we can 
reach any state Xr (r < R) by applying the reverse Salsa algorithm. The 
main idea behind probabilistic neutral bits is to partition all the key bits 
into two categories based on their influence on the output difference pos
ition. The key bits with less influence on the output difference position are 
categorized as probabilistic neutral bits. The remaining bits that influence 
the output are called significant bits. This partition helps to determine the 
key bit values separately, which improves the attack complexity. A detailed 
technical discussion on probabilistic neutral bits can be found in Aumasson 
et al. (2008) and Maitra (2016).

2.2. Previous attacks on these ciphers

Salsa was first cryptanalyzed in 2005 by Crowley (2005), who produced 
a truncated differential attack on Salsa20/5. In 2006, an attack on 
Salsa20/6 was proposed by Fischer et al. (2006). The following year, this 
attack was improved upon by Tsunoo et al. (2007), who cryptanalyzed 
Salsa20/7 with complexity 2190: Then, Aumasson et al. (2008) intro
duced the idea of probabilistic neutral bits, which helped to improve 
the complexity of the attack on Salsa20/7 to 2151 and also produce an 
attack on the next round. This work also provided the first cryptanalysis 
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against ChaCha. Long after, Choudhuri and Maitra (2016) introduced 
the multiple-bit distinguisher and distinguishers in higher rounds for 
both Salsa and ChaCha. Despite that they said that the complexity of 
their attack was 2137, the most recent change imparted to the complex
ity formula in Dey et al. (2022) indicates that the real run time cost is 
2149, which we discuss in the next subsection. This is the best-known 
result to date. In addition to these, the work of Maitra (2016) and Dey 
and Sarkar (2017) also cryptanalyzed Salsa and ChaCha. In recent years, 
several interesting contributions have been made in the cryptanalysis of 
these two ciphers by Beierle, Leander, and Todo (2020); Coutinho and 
Neto (2021); and Dey et al. (2022); Dey, Garai, and Maitra (2023); 
Coutinho et al. (2023).

2.3. Correction of the complexity in the attack of Choudhuri and Maitra 
(2016)

In the already-existing attacks, the whole key space (k) is divided into two 
sets—significant key bits (m) and probabilistic neutral bits (n)—and key 
recovery is made in two steps. The complexity formula initially used in the 
literature provided by Aumasson et al. (2008) was 2m � N þ 2k−a, where N 
is the data complexity and 2−a is the probability of a false alarm. A correc
tion of the complexity formula was given later by Dey et al. (2022) and is 
as follows:

2m � N þ 2k−a þ 2k−m:

Subsequently, Dey, Garai, and Maitra (2023) reported the complexities of 
several previous attacks against ChaCha as higher than the claim. In the 
same vein, we report the complexity of the 256-bit Salsa20/7. In the work 
by Choudhuri and Maitra (2016), the complexity is higher than the claim. 
They considered 107 significant bits and 149 probabilistic neutral bits in 
their attack. Thus, the term 2k−m is 2149 in the second stage of their attack, 
149 probabilistic neutral bits are needed to be exhaustively searched, mak
ing the second step’s complexity 2149: Their claimed complexity of 2137 is 
thus rectified to 2149:

3. New cryptanalysis of 256-bit Salsa20/7 using multiple (ID2OD) 
pairs

The primary idea of the multiple (ID −OD) attack is as follows: In the off
line stage, we partition the set of all key bits into four subsets: S1, S2, S3 and 
S4: S1 contains the bits that are significant with respect to (ID1 −OD1). S2 
contains the bits that are significant with respect to (ID2 −OD2) but not 
significant with respect to (ID1 −OD1). S3 contains the bits that are not 
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significant with respect to either ðID1 −OD1Þ or ðID2 −OD2Þ: S4 contains 
the rest of the key bits. Now, in the online phase, at the first stage, we 
recover the values of S1 key bits with the help of a distinguisher 
(ID1 −OD1). Once we achieve these values, we go on to the next stage to 
recover the values of S2 key bits, exploiting (ID2 −OD2). Then, in the third 
stage, we recover the values of S3 keybits are recovered using (ID3 −OD3). 
The rest S4 keybits are recovered via exhaustive search. A detailed technical 
discussion follows.

3.1. New distinguishers and right pairs

At first, we aim to find suitable distinguishers, that is, input difference– 
output difference pairs. Coutinho et al. (2023) proposed a 5-round distin
guisher with input difference at ð7, 31Þ and output difference at ð4, 7Þ:
Using this approach, the authors used the idea of “right pairs” given by 
Maitra (2016), in which the author showed that if a suitable choice of IV 
is made, the difference count after the first round can be restricted to 4, 
which can significantly improve bias. With the same approach, Coutinho 
et al. (2023) found the bias of the distinguisher to be 2−42:01 by using the 
piling-up lemma on the biases observed for three output difference posi
tions ð0, 0Þ, ð4, 7Þ, ð12, 0Þ:

To find new distinguishers, we take the seventh word of an initial 
state X and put input differences on each of its 32 bits one-by-one. To 
make the difference propagate less, we chose the seventh word, as it is 
the third element of the column vector (X15, X3, X7, X11). For an input 
difference in i-th bit (7,i), we get another state X0, and then on both the 
states, we run 1 forward Salsa round, minimizing the number of differ
ences in the first round, and observe the output difference after 4 
rounds. We filtered the (ID −OD) pairs that produce high bias. We 
observed noticeable bias for the pairs ðID ¼ ð7, 0Þ, OD ¼ ð1, 15ÞÞ, 
ðID ¼ ð7, 0Þ, OD ¼ ð1, 13ÞÞ, ðID ¼ ð7, 13Þ, OD ¼ ð1, 26ÞÞ after four for
ward rounds. We use ðID ¼ ð7, 0Þ, OD ¼ ð1, 13ÞÞ to exploit the second 
stage of the attack.

For the third stage, we observe that if we choose the OD3 to be very 
close to OD2, there is a huge number of common elements between the 
sets of two significant bits of the two stages. Thus, among the shortlisted 
ðID −ODÞ pairs, we choose ðID ¼ ð7, 13Þ, OD ¼ ð1, 26ÞÞ as ðID3 − 
OD3Þ whose OD is far from OD2: The differentials we have used for our 
attack along with their bias are therefore as follows Table 3: 

We do not claim that the choice of (ID −OD) is the best possible 
choice, but it serves our purpose. Now for any key, we observe that out 
of two randomly chosen IVs, one produces the minimum difference count 
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after the first. According to the terminology introduced in Beierle, 
Leander, and Todo (2020), such key-IV pairs are called right pairs. 
Following the idea of Beierle, Leander, and Todo (2020), if p is the prob
ability that a randomly chosen IV would form a right pair, the attack will 
be repeated p−1 times on average. Since p ¼ 1

2 here, we must multiply the 
complexity by 2.

3.2. Preprocessing: key-bit partitioning into three subsets

In the preprocessing stage, we split the set of key bits into three subsets: 
S1, S2, and S3:

Stage 1: By setting the input differences to ID1 ¼ ð7, 31Þ of X, we obtain a new 
state X0: We then execute the 4 Salsa round functions on both the states and 
observe the value at OD1 ¼ ð4, 7Þ of the difference matrix X5�X05: Let us call this 
difference DOD1 : After that, we generate Z, Z0 by running 2 more forward Salsa 
rounds on both states. Now we produce �X and X0 by altering a single key bit in X 
and X0: We calculate Z − �X and Z0 − X0 , run Rev2

S, and observe the difference at 
OD1: Let us call the difference �COD1 : We then check whether DOD1 ¼

�COD1 : We 
consider the key bit to be in S1, that is, the significant bit corresponding to 
ðID1,OD1) if the probability of the event of the equality of the two differences is 
less than the predetermined threshold c1: To construct S1, this procedure is 
repeated for each of the key bits. For c1¼ 0.55, we get the following S1 with 
cardinality 23:

41, 42, 43, 44, 77, 78, 79, 80, 101, 102, 113, 114, 154, 155, 156, 157, 158, 172, 173, 
233, 234, 235, 236

Backward bias: For each pair of states X, X0, we put random values at all the 
key bit positions other than the bits of S1 and construct the matrices ~X , ~X0 : Next, 
we apply Rev2

S on both Z − ~X and Z0 − ~X0 , and observe the difference at OD1:

Let us denote this by ~COD1 : We experimentally compute the bias of the 
event DOD1 ¼

~COD1 :

Stage 2: We repeat the procedure from above by setting the input difference to ID2 
¼(7,0), running X and X00 for four forward iterations, and recording the difference at 
OD2 ¼ ð1, 13Þ, which we label DOD2 : Following that, we produce the keystreams 
Z, Z00: First we get a set of 100 non-significant bits. Among them 16 bits that are 
already present in S1 are disregarded. Since these bits are not present in S1, we must 
take the following action for each of them: We obtain �X and X00 by complementing 
the key bit of X, X0, then we compute Z − �X and Z00 − X00 and run Rev3

S on the 
states. Then we observe the difference at OD2 (COD2 ). S2 includes bits for which the 

Table 3. Distinguishers for the attack against 7-round Salsa.
Recovered

Stage (i) Round ID OD Bias bits (Si)

1 5 (7,31) (4,7) 2−39 23
2 4 (7,0) (1,13) 0.23 84
3 4 (7,13) ð1, 26Þ 0.25 90
4 – – – – 59
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chances of ðDOD2 ¼ COD2Þ are less than a threshold value of 0.25. We get a set of 84 
elements in S2 which are as follows:

3, 4, 5, 6, 7, 8, 9, 12, 21, 22, 23, 24, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 
58, 59, 60, 61, 66, 67, 68, 69, 81, 82, 83, 92, 93, 94, 95, 103, 104, 105, 130, 131, 132, 
136, 137, 138, 139, 140, 144, 145, 146, 151, 152, 153, 177, 178, 179, 180, 181, 182, 
183, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 226, 227, 228, 231, 232, 
237, 238, 239, 240

Backward bias: For each pair of states X, X0, we put random values at all the key bit 
positions other than the bits of S1 and S2, and construct the matrices ~X and ~X00 : In a 
similar manner as in Stage 1, we apply Rev3

S on both of Z − ~X , Z00 − ~X00 , observe the 
difference at OD2 and compute backward bias �a2 ¼0.0011.1

Stage 3: In the third stage, we use the input difference ID3 ¼(7,13), run X and X00

for 4 forward rounds, and note the difference at OD3 ¼(1,26), which we label DOD3 :

Applying the same techniques as in the two earlier stages with threshold 0.80, we 
produce S3, which has 90 elements. The set S3 is as follows:

0, 1, 2, 13, 14, 15, 16, 17, 18, 19, 20, 25, 32, 33, 34, 35, 36, 37, 38, 39, 57, 62, 63, 64, 
70, 71, 72, 73, 74, 75, 76, 88, 89, 90, 91, 111, 112, 115, 116, 117, 118, 128, 129, 133, 
134, 135, 141, 142, 143, 147, 148, 149, 150, 159, 160, 161, 162, 163, 164, 187, 188, 
189, 190, 191, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 241, 
242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253

Backward bias: For the 59 elements that are not in S1 [ S2 [ S3, �a3 ¼ 0:63: Once 
S1, S2, and S3 have been built, the remaining 59 key bits that are not present in 
either of those sets are compiled into the fourth set, S4, and they will be searched 
online.

3.3. Online phase

From the perspective of the attacker, the first step in launching an attack is 
to gather the keystreams that will lead to the key.

3.3.1. Data collection
In the first stage, the attacker chooses N1 different IVs and forms N1 
states. Then, by putting the desired ID1 into each state X, a corre
sponding X0 is created. After the IVs are chosen, the attacker applies 
the Salsa round function 7 times on both X and X0 and collects the cor
responding Z and Z0 from the original machinery. The attacker then 
collects N1 pairs of keystreams and their corresponding IVs. For the 
second stage of key recovery, for N2 different IVs the attacker puts the 
input difference at ID2 and creates X00, then collects N2 pairs of key
streams Z, Z00:

1The Cþþ source code of the backward bias determination is uploaded in GitHub (Garai 2023).
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3.3.2. Key recovery
This phase comprises three stages. Let us denote the subkey corresponding 
to the bits of Si as Ki ði ¼ 1, 2, 3Þ: At first, the attacker fixes an IV 
at X7, X07:

Stage 1: The attacker begins by attempting to guess K1 while assigning random 
values to K2 and K3: For each of the assigned IV values at X6, X8, X9 in the original 
cipher during data collection, the attacker does as follows: they construct a state 
matrix G using those mentioned above K1, K2, K3 and X6, X8, X9: By putting the 
difference at ID1, the attacker constructs G0: Now they run 3 reverse Salsa rounds 
on states Z − G and Z0 − G0, where Z, Z0 correspond to the output keystream 
achieved by the same values of ðX6, X8, X9Þ: The attacker then observes the 
difference between the two states at the OD1 position. This process is done for all 
N1 states by changing the IVs at the sixth, eighth, and ninth words. If the 
difference at the OD1 position occurs for more than the predetermined threshold 
T1, the attacker considers this guess to be a potential candidate of K1 and proceeds 
to stage 2. We call this an “alarm.” Otherwise, the same process is carried out for 
another guess for K1: If we exhaust all possible guesses of K1 without recovering 
the key, we return to the initial stage, change the value of X7, and start the process 
again.

Stage 2: In this stage, the attacker aims to recover K2: Here the attacker has a K1 
subkey for which they have already received an alarm. Next, they guess K2, keep K1 
the same as before, and put random values in K3: The attacker chooses an IV from 
the N2 IVs and produces states G and G00, similarly to the previous stage, where the 
difference is at ID2: Then they run Z − G and Z00 − G00 by 3 reverse Salsa rounds 
and check the difference at the OD2 position. If the count of the difference is more 
than a predetermined threshold (T2), they gets an “alarm” and move forward to the 
next stage. If the number of occurrences of difference at the OD2 position does not 
cross T2, the attacker chooses another guess for K2 and repeats the same process. If 
all guesses are exhausted but the correct key is not found, the algorithm goes back to 
stage 1.

Stage 3: This stage is a repetition of the previous stage. Here the attacker recovers K3 
with the same technique used in the previous two steps. To guess K3 they check 
whether the number of occurrences crosses the threshold T3: If all the guesses are 
exhausted, then the attacker moves to the previous step.

Stage 4: This stage exhaustively searches K4: For each guess of K4 and the already 
assigned guesses of K1, K2, and K3, Salsa20/7 is run on G, and the output keystream 
is matched with the original keystream. If a match is found for some guess, that 
guessed value of K4 along with already-assigned values of K1, K2, and K3 are 
concluded to be correct. Otherwise, the algorithm goes back to stage 3.

Table 4. Complexity details for the attack against Salsa20/7.
Stage (i) Si p−1

i ai Ni Time

1 23 23 30 290:72 2113:72

2 84 2 100 231:61 2116:61

3 90 2 100 213:14 2103:14

4 59 – – – 259
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4. Complexity formula

If we dig into the literature, we see that Aumasson et al. (2008) used 
hypothesis testing to compute the complexity of the attack. They consid
ered two possible errors, which are as follows:

1. Non-detection error, where the algorithm can not detect it instead of 
the correct guess. The probability of this error is denoted by Prnd :

2. False-alarm error, where a wrong guess gives a high bias, leading the algo
rithm to accept this guess. The probability of this error is denoted by Prfa :

Prnd is taken to be at most 1:3� 10−3, and Prfa is chosen suitably to 
minimize attack complexity. All cryptanalysis on this cipher follows this 
approach. Dey, Garai, and Maitra (2023) modified the complexity for
mula for the case of multiple (ID −ODÞ pairs. They considered the 
probability of a false-alarm error in each stage separately. The probabil
ity at the i-th stage is Prfai ¼ 2−ai : If we consider the data complexity for 
the first and second stages to be N1 and N2, respectively, then Ni can be 
given by:

Ni �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaiÞ ln 4

p
− U−1 1

q Prnd

h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð�di�aiÞ
2

q

�di�ai

0

@

1

A

2

(3) 

Here, U is the cumulative distribution function of the standard normal dis
tribution. q is the number of ID −OD pairs used. The remaining nota
tions have been introduced already.

4.1. Complexity formula for our new attack approach

In our attack approach, we first search for the K1 subkey, using N1 pairs of 
states. Then we move forward to recover K2, using N2 pairs of states. K3 
bits are searched exhaustively. The corresponding complexities of these 
tasks are as follows:

� Complexity to recover Ki : 2jSij � Ni for i 2 f1, 2, 3g
� Complexity to recover K4 : 2jS4j

In each of the first three stages, a false-alarm error is possible. We 
express these probabilities of false-alarm error as 2−ai : Let Comp2 denote 
the total complexity to recover S2 and S3 key bits. Since the probability of 
false-alarm error in the first stage is 2−a1 , out of 2jS1j guesses, 2jS1j−a1 will 
give a false alarm and the algorithm will proceed to the next stage. Extra 
computation of complexity Comp2 is to be performed for each of these. 
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Also, for the correct guess of S1 key bits, the algorithm proceeds to the 
second stage and Comp2 would be added further to the complexity. So the 
total complexity of this multi-step approach is as follows:

p−1
1 ð2

jS1j � N1 þ 2jS1j−a1 � Comp2Þ þ Comp2: (4) 

Here p−1
1 is the number of times we have to repeat the attack in order to 

achieve a right pair.
Therefore:

Comp2 ¼ p−1
2 ð2

jS2j � N2 þ 2jS2j−a2 � Comp3Þ þ Comp3 (5) 

Let us compute the complexity Comp3: Here, the first job is to recover 
K3, which is done with complexity 2jS3j � N3: Since the false-alarm error 
probability is 2−a3 , 2jS3j−a3 wrong guesses produce false alarms. The algo
rithm is carried on to the third stage by each of them, adding an extra 2jS3j

in the complexity. Also note that the algorithm advances to stage 3 when 
the correct guess is made.

Comp3 ¼ p−1
3 ð2

jS3j � N3 þ 2jS3j−a3 � 2jS4j þ 2jS4jÞ (6) 

The overall data complexity is p−1
1 N1 þ p−1

2 N2 þ p−1
3 N3:

4.2. Complexity of our attack on 256-bit Salsa20/7

The values of N1, N2, N3 are calculated by formula 3. In our case, q ¼ 3: So 
U−1½13 Prnd� ¼ −3:4: For a1 ¼ 30, a2 ¼ 100, a3 ¼ 30, we have N1 ¼

290:72, N2 ¼ 231:61, N3 ¼ 213:14, respectively. Therefore, Comp3 ¼ 2103:14 from 
equation 6. Using this value, from equation 5 we get Comp2 ¼ 2ð284 �

231:61 þ 284−100 � 2103:14Þ þ 2103:14 ¼ 2116:61: Finally, putting this value into 
equation 4, the final time complexity is as follows:

2ð223 � 295:74 þ 223−30 � 2116:61Þ þ 2116:61 ¼ 2119:74:

The total data needed to carry out this attack are approximately 293:72:

Table 5. Distinguishers for the attack against Salsa20/7.5.
Recovered

Stage Round ID OD Bias Bits

1 5 (7,31) (4,7) 2−39 47
2 4 (7,0) (1,15) 0.39 149
3 – – – – 60

Table 6. Distinguishers for the attack against ChaCha20/6.5.
Recovered

Stage Round ID OD Bias bits

1 5 ð15, 29Þ � ð15, 9Þ ð2, 0Þ � ð6, 7Þ � ð6, 19Þ � ð10, 12Þ � ð14, 0Þ 2−34:15 61
2 4 (12,6) ð1, 0Þ � ð6, 7Þ � ð11, 0Þ 0.003 109
3 – – – – 86
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5. Attack on 256-bit Salsa20/7.5

We give the first-ever attack on 256-bit Salsa20/7.5 with the help of a 
multi-step approach. We break down the key-bit sets into three subsets—
S1, S2, and S3—in the preprocessing stage.

For the first stage, we have used the 5-round differential distinguisher 
ID1 −OD1 ¼ ((7,31)-(4,7)) as given by Coutinho et al. (2023). To attack 
7.5 rounds, we have to go back 2.5 rounds to reach the desired differential 
position. Using the threshold c ¼ 0.55, we obtain 47 elements for S1, 
which follow:

0, 1, 2, 3, 40, 41, 42, 43, 44, 77, 78, 79, 80, 101, 102, 111, 112, 113, 114, 129, 130, 
131, 132, 134, 135, 136, 137, 153, 154, 155, 156, 157, 158, 170, 171, 172, 173, 227, 
228, 229, 230, 233, 234, 235, 236, 247, 248

The other 209 key bits give us a backward bias (�a) of 0.07764 experimen
tally. In the second stage, we have used the 4-round distinguisher ID2 − 
OD2 ¼ ((7,0)-(1,15)). In this stage, we obtained a set of 149 elements that 
are different from the set S1: S2 consists of all those 149 elements.

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 
31, 38, 39, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 
65, 66, 67, 68, 69, 70, 71, 81, 82, 83, 84, 85, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 
100, 103, 104, 105, 106, 107, 108, 109, 110, 115, 116, 117, 118, 119, 120, 128, 133, 
138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 159, 160, 
161, 162, 163, 164, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 
189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 
225, 226, 231, 232, 237, 238, 239, 240, 241, 242

Since there is no common elements between S1 and S2, we have a total 
of 196 elements in S1 [ S2: The other 60 elements are labeled as S3, and 
they are searched exhaustively. Figure 1 gives an overview of the attack.

5.1. Complexity

The key-bit set is broken into two—hence q ¼ 2—so in formula 3, 
U−1½12 Prnd� ¼ −3:2: With the value of a1 ¼ 60, we get N1 ¼ 298:64: For 
a2 ¼ 160, the data complexity for the second stage becomes N2 ¼ 214:54:

Therefore, the total complexity for stage 2 and stage 3 becomes 2163:54, 
which in turn makes the total time complexity of the attack approxi
mately 2163:54:

6. Attack on 256-bit ChaCha20/6.5

Here we present the first-ever attack on ChaCha20/6.5. We applied the 
attack with two ID −ODs. The first ID −OD is given by Bellini et al. 
(2023). The ID −ODs we have considered here are as follows:
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1. ID1 −OD1 : ðð15, 29Þ�ð15, 9Þ, ð2, 0Þ�ð6, 7Þ�ð6, 19Þ�ð10, 12Þ�ð14, 0ÞÞ
(Bellini et al. 2023)

2. ID2 −OD2 : ðð12, 6Þ, ð1, 0Þ�ð6, 7Þ�ð11, 0ÞÞ

In the first stage of preprocessing, using c ¼ 0.6 we get 61 significant 
bits, which are directly included in S1; the other 195 key bits give a back
ward bias (�a) of 0.0845. The set S1 ¼

16, 17, 18, 19, 20, 21, 22, 23, 67, 68, 69, 73, 74, 75, 79, 80, 81, 105, 106, 107, 112, 
113, 114, 120, 121, 122, 123, 124, 125, 126, 132, 133, 134, 135, 136, 137, 138, 139, 
195, 196, 197, 201, 202, 203, 215, 216, 217, 227, 228, 229, 230, 236, 237, 238, 239, 
240, 241, 242, 252, 253, 254

In the second stage, we have used the 4-round distinguisher. We have 
set c ¼ 0:7 and obtained S2 to be a set of 109 elements after removing the 
common elements from S1:

Figure 1. Multi-step approach on 256-bit Salsa20/7.5.
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0, 1, 2, 3, 9, 10, 11, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 35, 36, 37, 48, 49, 50, 54, 55, 
56, 57, 58, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 109, 110, 111, 115, 116, 
117, 118, 119, 127, 129, 130, 131, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 
150, 151, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 183, 184, 
185, 194, 198, 199, 204, 205, 206, 207, 208, 209, 210, 220, 221, 222, 224, 225, 226, 
231, 232, 233, 234, 235, 243, 244, 245, 246, 247, 248, 249

The rest of the 86 elements that are not in S1 or S2 are considered to be 
in S3: These 86 elements give a backward bias of 0.0873.

6.1. Complexity

Here, as with Salsa20/7.5, q ¼ 2, so using formula 3 we get N1 ¼ 283:74 for 
a1 ¼ 75: In the next stage, using a2 ¼ 120, N2 ¼ 231:66: But the whole pro
cess has to be repeated 25 times to get a suitable IV. We have Comp2 ¼

2109 � 236:66 þ 2195−120 þ 286 � 2145:66: Therefore, the total complexity 
becomes 2151:74, while the overall data complexity is 290:74 þ 236:66 � 290:74:

7. Conclusion

This work focused primarily on improving forward bias and modified attack 
technique. Use of a multi-step approach produces a significant improvement in 
the attack complexity. This attack opens several directions for further research. 
The first is whether we can tweak the attack model slightly to achieve improve
ment in complexity, and the second is analyzing the scenario of using more than 
two ID −OD pairs to improve the attack further. We believe that this work 
will lead to achieving better cryptanalytic results on Salsa family of ciphers.
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