Taylor & Francis
Cryptologia

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ucry20

A multi-step key recovery attack on reduced round
Salsa and ChaCha

Hirendra Kumar Garai & Sabyasachi Dey

To cite this article: Hirendra Kumar Garai & Sabyasachi Dey (10 Jun 2024): A multi-
step key recovery attack on reduced round Salsa and ChaCha, Cryptologia, DOI:
10.1080/01611194.2024.2342918

To link to this article: https://doi.org/10.1080/01611194.2024.2342918

% Published online: 10 Jun 2024.

N\
[:J/ Submit your article to this journal &

||I| Article views: 50

A
& View related articles &'

P

(!) View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=ucry20

https://www.tandfonline.com/action/journalInformation?journalCode=ucry20
https://www.tandfonline.com/journals/ucry20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01611194.2024.2342918
https://doi.org/10.1080/01611194.2024.2342918
https://www.tandfonline.com/action/authorSubmission?journalCode=ucry20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ucry20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01611194.2024.2342918?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01611194.2024.2342918?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/01611194.2024.2342918&domain=pdf&date_stamp=10 Jun 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/01611194.2024.2342918&domain=pdf&date_stamp=10 Jun 2024

CRYPTOLOGIA Taylor & Francis
https://doi.org/10.1080/01611194.2024.2342918 Taylor & Francis Group

‘ W) Check for updates‘

A multi-step key recovery attack on reduced round
Salsa and ChaCha

Hirendra Kumar Garai and Sabyasachi Dey

ABSTRACT KEYWORDS

This paper develops a significantly enhanced attack on the ARX; ChaCha; differential
ciphers Salsa and ChaCha. The existing attacks against these cryptanalysis; key recovery
ciphers are mainly differential attacks. In this work, we pro- 2ttacki Salsa

duce an attack on 7.5-round Salsa and 6.5-round ChaCha20.

These are the maiden key-recovery attacks on those versions

of the two ciphers, in which we recover the key in multiple

steps using several distinguishers. In comparison to the previ-

ous best-known attack against 7-round Salsa, the new attack

method offers an improvement of 27° times, while on

7.5-round Salsa20 and 6.5-round ChaCha20 our attack is the

only existing one.

1. Introduction

The world of stream ciphers was lacking trustworthy and efficient ciphers
in the 2000s. In the search for an efficient yet fast stream cipher, the
eSTREAM project emerged. In the third-phase selection, eSTREAM vali-
dated the Salsa family of ciphers in 2007, which was submitted by Daniel J.
Bernstein in 2005.

Salsa20/12 was one of seven finalists in the eSTREAM project (2005-
2008). The Salsa20/20 cipher is appealing for encryption due to its high
speed and security. In the next year 2018, Bernstein released a newer ver-
sion of Salsa—known as ChaCha—by increasing the diffusion in Salsa.

Both Salsa and ChaCha are addition/rotation/XOR (ARX)-based crypto-
graphic primitives. Their keystream generation algorithm comprises three
simple operations: Addition modulo 2% (H), constant distance left bit rota-
tion (<), and bitwise XOR operation (). These operations are swift in
any circuit, and hence the cipher can achieve significant speed with a high
security margin. Due to their efficient algorithm and fast performance,
both ciphers have attracted cryptographic analysis since their release. Most
attacks on these two ciphers are of differential and linear attack.

CONTACT Hirendra Kumar Garai @ hirengarai@gmail.com e Mathematics Department, BITS Pilani, Hyderabad
Campus.
© 2024 Taylor & Francis Group, LLC

http://crossmark.crossref.org/dialog/?doi=10.1080/01611194.2024.2342918&domain=pdf&date_stamp=2024-06-05
http://www.tandfonline.com
https://doi.org/10.1080/01611194.2024.2342918

2 H. K. GARAI AND S. DEY

1.1. Design principles of the Salsa and ChaCha family

The Salsa20 cipher takes a 256-bit key (k), a 128-bit constant (c), and a
128-bit initial vector (v), or IV, and generates a 512-bit keystream. The key
is divided into eight 32-bit words (ko, k1, ..., k7). Similarly, the constant and
the IV are also broken into 32-bit words (cg, ¢, ¢, c3) and (vg, v, fo,).
Due to the use of the 256-bit key, the cipher is also called 256-bit Salsa20.
Inputs are stored in a 4 x 4 matrix as follows:

Xo X1 Xo X3 c ko ki k
X — Xy X5 Xo X5 | _|ks o a v owm
Xs Xo Xio Xn th o ky
X2 X3 X Xis ks ks ki cs

The round function in Salsa20 is constructed using 4 quarter-round
functions, each of which is an ARX function. Together, these ARX func-
tions form the round function. The quarter-round function takes four 32-
bit words (x, y, z, w) and updates them to (x,y,Z/,w') by calculating the
following:

y D ((xHw) <7);
"=z ® ((YBx) <9); "

w @ ((ZHy) <«13);

x D (

wHZ') «18);

~—~~

The Salsa round function can be broken into two parts. The first half of
the round function is formed using the same 4 quarter-round functions,
but each quarter-round function is made up of the first two equations of
(1). In the same way, the second half of the round function is made using
the quarter-round functions constructed by the last two equations of (1).

In each odd-numbered round, the four columns of the matrix X are
updated by this quarter-round function; in the even-numbered rounds, this
function is applied to the rows of the matrix.

In the original Salsa20 cipher, the number of rounds is 20. After the final
round, the initial state X is added modulo (2*?) to the updated state X%
word-by-word, and the keystream (Z) of 512 bits is achieved, that is,
Z = XHX?. This keystream is then bitwise XORed to plaintext to get the
ciphertext.

One property of this round function is that we can go backward from
any round r + 1 to its previous-round r; that is, X"*! can be converted to
X" by one reverse Salsa round function (Revg):Revg(X"™) = X". The reverse
Salsa round function similarly consists of 4 quarter-round functions, each
of which has ARX operations inside them. For more details, refer to
Bernstein (2008). The design of ChaCha mimics the Salsa cipher. ChaCha
also takes an input of 512 bits and processes it to a 512-bit keystream. The

CRYPTOLOGIA 3

input consists of four constants, eight keywords, and four initial vectors.
Each of them are 32 bits. They are arranged in a 4 X 4 matrix that forms
the initial state:

Xo X1 Xo X3 G €1 & 6
X — Xy X5 Xe X5 | _ | ko ki ky ks
Xg Xo Xio X ki ks ks k;
X1y X135 X Xis o vo Vi W2

The matrix is then updated by the ChaCha round function, which is
made up of 4 quarterround functions. Each quarterround function
transforms a vector (a, b, ¢, d) to (a”,b",¢",d") in the following way:

ad =a B b d =(d®]d) «16);
d =c B d b =((b®d) «12); 2
ad'=d B b/, d' = ((d’ fan a//) <<<8),
I =cd /B d V' = (@ ") «7);

In case of the ChaCha cipher, in the odd-numbered rounds the columns
are updated; in the even-numbered rounds, the diagonals are updated. In
the same way as the Salsa cipher, the first half of the ChaCha round func-
tions are defined by the quarter-round functions that use the first four
equations of (2). The second half of the round functions uses the next four
equations of (2).

After full R ChaCha rounds, the initial state is added to the final state
and we have the keystream in the matrix form.

Similar to Salsa, the ChaCha round function is also reversible. Further
details can be found in Bernstein (2008).

Table 1. Notations used in this article.

Symbol Meaning

Salsa20/R Salsa with R-rounds

ChaCha20/R ChaCha with R-rounds

D Input difference bit

oD Output difference bit

X The initial state matrix consisting of 16 words

X The state matrix after giving difference to X at ZD;
X' The state matrix after giving difference to X at ZD,
X The state matrix after r forward Salsa rounds

Revg r Reverse Salsa rounds

X i-th word of the state matrix X

xHBy Addition of x and y modulo 232

x®Dy Bitwise XOR of x and y

X <&n Left rotation of x by n bits

(a,b) The position of b-th bit of the a-th word of the state matrix
Si The set of key bits recovered in i-th stage

K; Corresponding subkey of S;.

4 H. K. GARAI AND S. DEY

1.2. Outline and contribution

We have presented here an improved differential attack technique on the
Salsa and ChaCha ciphers. We used some extra conditions in choosing the
proper IV, which in turn helps improve the existing attack on Salsa20/7. In
addition, those choices contributed to the first-ever attack on Salsa20/7.5
and ChaCha 20/6.5. The attack on Salsa20/7 exploits three (ZD — OD)
pairs. Here we split the entire key into four subkey sets and recover them
one-by-one. This approach significantly improves the complexity by 27°
over the previously existing best attack. The attack on Salsa20/7.5 uses two
ID - OD s. We also implemented the first-ever attack on ChaCha20/6.5.
The paper is organized as follows.

e Section 1 discusses the design principles of the Salsa and ChaCha
ciphers.

e In Section 2, we explain the basic outline of the present attack approach
on Salsa and ChaCha. In Section 2.1, we report on the existing attacks
on Salsa and the correction of complexity in one of the works.

e Section 3 describes our multi-step attack on Salsa20/7 in detail. The
attack consists of a preprocessing phase and an online phase. We dis-
cuss them respectively in Subsections 3.2 and 3.3.

e In Section 4, we propose a complexity calculation formula for this
multi-step attack approach, which is modified from previously existing
formulas. We consider the probability of false-alarm errors and compute
their influence on overall complexity. After that, using this formula, we
compute complexity.

e Sections 5 and 6 address details of the attack on Salsa20/7.5 and
ChaCha20/6.5.

e Section 7 offers a conclusion.

2. Cryptanalysis of Salsa and ChaCha

The cryptanalytic techniques used on these ciphers are mostly differential
attacks. In a differential attack, the attacker is assumed to have access to

Table 2. Complexities of certain previous key recovery attacks on 256-bit Salsa20/7 and our
results.

Cipher Round Data complexity Time complexity Year Attack
- 2190 2007 [Tsunoo et al. 2007]
7 22 2™ 2008 [Aumasson et al. 2008]
Salsa 201 214 2016 [Choudhuri and Maitra 2016]
210447 212516 2023 [Coutinho et al. 2023]
D PR 2023 [Our work]
75 e ZALEES 2023 [Our work]
ChaCha 6.5 7R AL 2023 [Our work]

CRYPTOLOGIA 5

the IV. As stated by Maitra (2016), the central idea of these attacks is to
input differences in the initial state and look for biases in the output. After
moving forward as described earlier, we can move backward a few rounds
from the final state to get more non-randomness. In a broad sense, the dif-
ferential attack searches for the high-probability occurrences of ciphertext
differences for certain plaintext differences.

In existing attacks against Salsa, an input difference is given in position
(i,j) (ZD) of the initial state X, which creates X’; after running both r Salsa
rounds forward, the attacker look for some high bias at some bit of the
output difference matrix X"@®X'". If such a bias is found at the g-th bit of
the p-th word, we call this bit (OD). The corresponding bias is called for-
ward bias and is denoted by ¢;. Forward bias can be exploited as a distin-
guisher of the cipher. In addition, it is used to recover the key, using the
concept of probabilistic neutral bits.

2.1. Probabilistic neutral bits

Aumasson et al. (2008) made a major contribution to attacks against the
Salsa family of ciphers in FSE 2008, in which they introduced the concept
of probabilistic neutral bits. In Salsa20/R, the design principle makes clear
that from the final output keystream Z, if we subtract the initial state
matrix X (modulo 23?), we achieve the final state XX. From there, we can
reach any state X" (r < R) by applying the reverse Salsa algorithm. The
main idea behind probabilistic neutral bits is to partition all the key bits
into two categories based on their influence on the output difference pos-
ition. The key bits with less influence on the output difference position are
categorized as probabilistic neutral bits. The remaining bits that influence
the output are called significant bits. This partition helps to determine the
key bit values separately, which improves the attack complexity. A detailed
technical discussion on probabilistic neutral bits can be found in Aumasson
et al. (2008) and Maitra (2016).

2.2. Previous attacks on these ciphers

Salsa was first cryptanalyzed in 2005 by Crowley (2005), who produced
a truncated differential attack on Salsa20/5. In 2006, an attack on
Salsa20/6 was proposed by Fischer et al. (2006). The following year, this
attack was improved upon by Tsunoo et al. (2007), who cryptanalyzed
Salsa20/7 with complexity 2'°°. Then, Aumasson et al. (2008) intro-
duced the idea of probabilistic neutral bits, which helped to improve
the complexity of the attack on Salsa20/7 to 2'°! and also produce an
attack on the next round. This work also provided the first cryptanalysis

6 H. K. GARAI AND S. DEY

against ChaCha. Long after, Choudhuri and Maitra (2016) introduced
the multiple-bit distinguisher and distinguishers in higher rounds for
both Salsa and ChaCha. Despite that they said that the complexity of
their attack was 2'%7, the most recent change imparted to the complex-
ity formula in Dey et al. (2022) indicates that the real run time cost is
2% which we discuss in the next subsection. This is the best-known
result to date. In addition to these, the work of Maitra (2016) and Dey
and Sarkar (2017) also cryptanalyzed Salsa and ChaCha. In recent years,
several interesting contributions have been made in the cryptanalysis of
these two ciphers by Beierle, Leander, and Todo (2020); Coutinho and
Neto (2021); and Dey et al. (2022); Dey, Garai, and Maitra (2023);
Coutinho et al. (2023).

2.3. Correction of the complexity in the attack of Choudhuri and Maitra
(2016)

In the already-existing attacks, the whole key space (k) is divided into two
sets—significant key bits (m) and probabilistic neutral bits (n)—and key
recovery is made in two steps. The complexity formula initially used in the
literature provided by Aumasson et al. (2008) was 2™ - N + 25 where N
is the data complexity and 27* is the probability of a false alarm. A correc-
tion of the complexity formula was given later by Dey et al. (2022) and is
as follows:

Subsequently, Dey, Garai, and Maitra (2023) reported the complexities of
several previous attacks against ChaCha as higher than the claim. In the
same vein, we report the complexity of the 256-bit Salsa20/7. In the work
by Choudhuri and Maitra (2016), the complexity is higher than the claim.
They considered 107 significant bits and 149 probabilistic neutral bits in
their attack. Thus, the term 25 is 214 in the second stage of their attack,
149 probabilistic neutral bits are needed to be exhaustively searched, mak-
ing the second step’s complexity 2'¥°. Their claimed complexity of 2!% is
thus rectified to 2'%.

3. New cryptanalysis of 256-bit Salsa20/7 using multiple (ID—OD)
pairs

The primary idea of the multiple (ZD — OD) attack is as follows: In the off-
line stage, we partition the set of all key bits into four subsets: S, S,,S; and
S4. 81 contains the bits that are significant with respect to (ZD; — OD,). S,
contains the bits that are significant with respect to (ZD, — OD,) but not
significant with respect to (ZD; — OD;). S; contains the bits that are not

CRYPTOLOGIA 7

significant with respect to either (ZD; — OD,) or (ID, — OD;). S, contains
the rest of the key bits. Now, in the online phase, at the first stage, we
recover the values of S; key bits with the help of a distinguisher
(IDy — ODy). Once we achieve these values, we go on to the next stage to
recover the values of S, key bits, exploiting (ZD, — OD,). Then, in the third
stage, we recover the values of S keybits are recovered using (ZD; — ODs).
The rest S, keybits are recovered via exhaustive search. A detailed technical
discussion follows.

3.1. New distinguishers and right pairs

At first, we aim to find suitable distinguishers, that is, input difference-
output difference pairs. Coutinho et al. (2023) proposed a 5-round distin-
guisher with input difference at (7,31) and output difference at (4,7).
Using this approach, the authors used the idea of “right pairs” given by
Maitra (2016), in which the author showed that if a suitable choice of IV
is made, the difference count after the first round can be restricted to 4,
which can significantly improve bias. With the same approach, Coutinho
et al. (2023) found the bias of the distinguisher to be 27**! by using the
piling-up lemma on the biases observed for three output difference posi-
tions (0,0), (4,7),(12,0).

To find new distinguishers, we take the seventh word of an initial
state X and put input differences on each of its 32 bits one-by-one. To
make the difference propagate less, we chose the seventh word, as it is
the third element of the column vector (Xis,X3,X7,X5;). For an input
difference in i-th bit (7,i), we get another state X', and then on both the
states, we run 1 forward Salsa round, minimizing the number of differ-
ences in the first round, and observe the output difference after 4
rounds. We filtered the (ZD — OD) pairs that produce high bias. We
observed noticeable bias for the pairs (ZD = (7,0), OD = (1,15)),
(ID = (7,0), OD = (1,13)), (ZD = (7,13), OD = (1,26)) after four for-
ward rounds. We use (ZD = (7,0), OD = (1,13)) to exploit the second
stage of the attack.

For the third stage, we observe that if we choose the OD; to be very
close to OD,, there is a huge number of common elements between the
sets of two significant bits of the two stages. Thus, among the shortlisted
(ZD — OD) pairs, we choose (ZD = (7,13), OD = (1,26)) as (ZD;—
ODs) whose OD is far from OD,. The differentials we have used for our
attack along with their bias are therefore as follows Table 3:

We do not claim that the choice of (ZD — OD) is the best possible
choice, but it serves our purpose. Now for any key, we observe that out
of two randomly chosen IVs, one produces the minimum difference count

8 H. K. GARAI AND S. DEY

Table 3. Distinguishers for the attack against 7-round Salsa.

Recovered
Stage (i) Round 1D OD Bias bits (S;)
1 5 (7,31) 4,7 27% 23
2 4 (7,0) (1,13) 0.23 84
3 4 (7,13) (1,26) 0.25 90
4 - - - - 59

after the first. According to the terminology introduced in Beierle,
Leander, and Todo (2020), such key-IV pairs are called right pairs.
Following the idea of Beierle, Leander, and Todo (2020), if p is the prob-
ability that a randomly chosen IV would form a right pair, the attack will
be repeated p~' times on average. Since p = J here, we must multiply the
complexity by 2.

3.2. Preprocessing: key-bit partitioning into three subsets

In the preprocessing stage, we split the set of key bits into three subsets:
Sl, Sz, and S3.

Stage 1: By setting the input differences to ZD; = (7,31) of X, we obtain a new
state X’. We then execute the 4 Salsa round functions on both the states and
observe the value at OD; = (4,7) of the difference matrix X*®X". Let us call this
difference App,. After that, we generate Z,Z' by running 2 more forward Salsa
rounds on both states. Now we produce X and X’ by altering a single key bit in X
and X'. We calculate Z— X and Z' — X/, run Rev}, and observe the difference at
OD;. Let us call the difference T’ op,- We then check whether App, = r op,- We
consider the key bit to be in §;, that is, the significant bit corresponding to
(ID,,OD) if the probability of the event of the equality of the two differences is
less than the predetermined threshold y;,. To construct S;, this procedure is
repeated for each of the key bits. For y,= 0.55, we get the following S; with
cardinality 23:

41, 42, 43, 44, 77, 78, 79, 80, 101, 102, 113, 114, 154, 155, 156, 157, 158, 172, 173,
233, 234, 235, 236

Backward bias: For each pair of states X,X, we put random values at all the
key bit positions other than the bits of S; and construct the matrices X, X’. Next,
we apply Rev on both Z—X and Z' — X', and observe the difference at OD;.
Let us denote this by T'pp,. We experimentally compute the bias of the
event App, = r oD, -

Stage 2: We repeat the procedure from above by setting the input difference to ID,
=(7,0), running X and X" for four forward iterations, and recording the difference at
OD, = (1,13), which we label App,. Following that, we produce the keystreams
Z,7". First we get a set of 100 non-significant bits. Among them 16 bits that are
already present in S; are disregarded. Since these bits are not present in S;, we must
take the following action for each of them: We obtain X and X” by complementing
the key bit of X,X’, then we compute Z—X and Z” —X” and run Rev; on the
states. Then we observe the difference at OD, (I'pp,). S, includes bits for which the

CRYPTOLOGIA 9

chances of (App, = I'op,) are less than a threshold value of 0.25. We get a set of 84
elements in S, which are as follows:

3,4,5,6,7,8,9, 12, 21, 22, 23, 24, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
58, 59, 60, 61, 66, 67, 68, 69, 81, 82, 83, 92, 93, 94, 95, 103, 104, 105, 130, 131, 132,
136, 137, 138, 139, 140, 144, 145, 146, 151, 152, 153, 177, 178, 179, 180, 181, 182,
183, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 226, 227, 228, 231, 232,
237, 238, 239, 240

Backward bias: For each pair of states X, X', we put random values at all the key bit
positions other than the bits of S; and S;, and construct the matrices X and X”. In a
similar manner as in Stage 1, we apply Rev} on both of Z — X,Z" — X", observe the
difference at OD, and compute backward bias ¢,, =0.0011."

Stage 3: In the third stage, we use the input difference ZD; =(7,13), run X and X”
for 4 forward rounds, and note the difference at OD; =(1,26), which we label App,.
Applying the same techniques as in the two earlier stages with threshold 0.80, we
produce S;, which has 90 elements. The set S; is as follows:

0, 1, 2, 13, 14, 15, 16, 17, 18, 19, 20, 25, 32, 33, 34, 35, 36, 37, 38, 39, 57, 62, 63, 64,
70, 71, 72, 73, 74, 75, 76, 88, 89, 90, 91, 111, 112, 115, 116, 117, 118, 128, 129, 133,
134, 135, 141, 142, 143, 147, 148, 149, 150, 159, 160, 161, 162, 163, 164, 187, 188,
189, 190, 191, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 241,
242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253

Backward bias: For the 59 elements that are not in §; US, US;, €, = 0.63. Once
S1, S2, and S3 have been built, the remaining 59 key bits that are not present in
either of those sets are compiled into the fourth set, S;, and they will be searched
online.

3.3. Online phase

From the perspective of the attacker, the first step in launching an attack is
to gather the keystreams that will lead to the key.

3.3.1. Data collection

In the first stage, the attacker chooses N; different IVs and forms N,
states. Then, by putting the desired ZD; into each state X, a corre-
sponding X’ is created. After the IVs are chosen, the attacker applies
the Salsa round function 7 times on both X and X’ and collects the cor-
responding Z and Z' from the original machinery. The attacker then
collects N; pairs of keystreams and their corresponding IVs. For the
second stage of key recovery, for N, different IVs the attacker puts the
input difference at ZD, and creates X", then collects N, pairs of key-
streams Z,Z".

"The C++ source code of the backward bias determination is uploaded in GitHub (Garai 2023).

10 H. K. GARAI AND S. DEY

3.3.2. Key recovery

This phase comprises three stages. Let us denote the subkey corresponding
to the bits of S; as K; (i =1,2,3). At first, the attacker fixes an IV
at X7,X-/7.

Stage 1: The attacker begins by attempting to guess K; while assigning random
values to K; and K;. For each of the assigned IV values at Xg, X5, Xy in the original
cipher during data collection, the attacker does as follows: they construct a state
matrix G using those mentioned above Kj,K,,K; and Xg, Xg, Xe. By putting the
difference at ZD;, the attacker constructs G'. Now they run 3 reverse Salsa rounds
on states Z— G and Z'— G/, where Z,Z' correspond to the output keystream
achieved by the same values of (X5, Xs,Xo). The attacker then observes the
difference between the two states at the OD, position. This process is done for all
N, states by changing the IVs at the sixth, eighth, and ninth words. If the
difference at the OD; position occurs for more than the predetermined threshold
T), the attacker considers this guess to be a potential candidate of K; and proceeds
to stage 2. We call this an “alarm.” Otherwise, the same process is carried out for
another guess for K;. If we exhaust all possible guesses of K; without recovering
the key, we return to the initial stage, change the value of X7, and start the process
again.

Stage 2: In this stage, the attacker aims to recover K,. Here the attacker has a K;
subkey for which they have already received an alarm. Next, they guess K;, keep K;
the same as before, and put random values in K;. The attacker chooses an IV from
the N, IVs and produces states G and G”, similarly to the previous stage, where the
difference is at ZD,. Then they run Z— G and Z"” — G” by 3 reverse Salsa rounds
and check the difference at the OD, position. If the count of the difference is more
than a predetermined threshold (T3), they gets an “alarm” and move forward to the
next stage. If the number of occurrences of difference at the OD, position does not
cross T, the attacker chooses another guess for K, and repeats the same process. If
all guesses are exhausted but the correct key is not found, the algorithm goes back to
stage 1.

Stage 3: This stage is a repetition of the previous stage. Here the attacker recovers Kj
with the same technique used in the previous two steps. To guess K; they check
whether the number of occurrences crosses the threshold T5. If all the guesses are
exhausted, then the attacker moves to the previous step.

Stage 4: This stage exhaustively searches K;. For each guess of K, and the already
assigned guesses of K;, K5, and K3, Salsa20/7 is run on G, and the output keystream
is matched with the original keystream. If a match is found for some guess, that
guessed value of K, along with already-assigned values of K;,K,, and K; are
concluded to be correct. Otherwise, the algorithm goes back to stage 3.

Table 4. Complexity details for the attack against Salsa20/7.

Stage (i) S; p’ o N; Time
1 23 23 30 290.72 2]13.72
2 84 2 100 231.61 2116,61
3 90 2 100 213.14 2103.14
4 59 - - - 2%

CRYPTOLOGIA 11

4. Complexity formula

If we dig into the literature, we see that Aumasson et al. (2008) used
hypothesis testing to compute the complexity of the attack. They consid-
ered two possible errors, which are as follows:

1. Non-detection error, where the algorithm can not detect it instead of
the correct guess. The probability of this error is denoted by Pr,, .

2. False-alarm error, where a wrong guess gives a high bias, leading the algo-
rithm to accept this guess. The probability of this error is denoted by Pry, .

Pr,, is taken to be at most 1.3 x 1073, and Prs, is chosen suitably to
minimize attack complexity. All cryptanalysis on this cipher follows this
approach. Dey, Garai, and Maitra (2023) modified the complexity for-
mula for the case of multiple (ZD — OD) pairs. They considered the
probability of a false-alarm error in each stage separately. The probabil-
ity at the i-th stage is Pry, = 27%. If we consider the data complexity for
the first and second stages to be N; and N,, respectively, then N; can be
given by:

2

V() In4 — @ [; Prnd] 1 - (eq€a)’

€d,€q,

Here, @ is the cumulative distribution function of the standard normal dis-
tribution. g is the number of ZD — OD pairs used. The remaining nota-
tions have been introduced already.

4.1. Complexity formula for our new attack approach

In our attack approach, we first search for the K; subkey, using N; pairs of
states. Then we move forward to recover K, using N, pairs of states. K3
bits are searched exhaustively. The corresponding complexities of these
tasks are as follows:

e Complexity to recover K; : 2151 . N; for i € {1,2,3}
e Complexity to recover Ky : 2/%

In each of the first three stages, a false-alarm error is possible. We
express these probabilities of false-alarm error as 27%. Let Comp, denote
the total complexity to recover S, and S; key bits. Since the probability of
false-alarm error in the first stage is 27*, out of 2/t guesses, 2/%11=* will
give a false alarm and the algorithm will proceed to the next stage. Extra
computation of complexity Comp, is to be performed for each of these.

12 H. K. GARAI AND S. DEY

Also, for the correct guess of S; key bits, the algorithm proceeds to the
second stage and Comp, would be added further to the complexity. So the
total complexity of this multi-step approach is as follows:

T2 Ny + 21817 Comp,) 4+ Comp,. (4)

Here p7! is the number of times we have to repeat the attack in order to

achieve a right pair.
Therefore:

Comp, = p;l(z‘szl N, 4 2% . Comp,) + Comp, (5)

Let us compute the complexity Comp,. Here, the first job is to recover
K3, which is done with complexity 2!l . N3. Since the false-alarm error
probability is 27, 2/%/=% wrong guesses produce false alarms. The algo-
rithm is carried on to the third stage by each of them, adding an extra 2/
in the complexity. Also note that the algorithm advances to stage 3 when
the correct guess is made.

Comp, = P;l (2|53\ N5 + 21S3]=%3 5[S4] + 2|S4|) (6)

The overall data complexity is p;'N; + p5'Ns + p3'Ns.

4.2. Complexity of our attack on 256-bit Salsa20/7

The values of N;, N, N5 are calculated by formula 3. In our case, g = 3. So
@' Pr,y) = -3.4. For oy =30,0,0=100,03 =30, we have N;=
29072 N, = 23161 N3 = 21314 respectively. Therefore, Comp; = 2! from
equation 6. Using this value, from equation 5 we get Comp, = 2(2% -
23161 4 984100 9103.14) 4 5103.14 — 11661 " Rinally, putting this value into
equation 4, the final time complexity is as follows:

2(223 . 295474 + 223—30 . 2116.61) + 2116461 — 2119.74‘

The total data needed to carry out this attack are approximately 272

Table 5. Distinguishers for the attack against Salsa20/7.5.

Recovered

Stage Round D OD Bias Bits

1 5 (7,31) 4,7) 27% 47

2 4 (7,0) (1,15) 0.39 149

3 - - - - 60
Table 6. Distinguishers for the attack against ChaCha20/6.5.

Recovered

Stage Round ID OD Bias bits
1 5 (15,29) @ (15,9) (2,0) @ (6,7) ® (6,19) D (10,12) @ (14,0) 27341 61

2 4 (12,6) (1,0) & (6,7) D (11,0) 0.003 109
3 - - - - 86

CRYPTOLOGIA 13

5. Attack on 256-bit Salsa20/7.5

We give the first-ever attack on 256-bit Salsa20/7.5 with the help of a
multi-step approach. We break down the key-bit sets into three subsets—
S1, Sz, and S3—in the preprocessing stage.

For the first stage, we have used the 5-round differential distinguisher
1D, - OD, = ((7,31)-(4,7)) as given by Coutinho et al. (2023). To attack
7.5 rounds, we have to go back 2.5 rounds to reach the desired differential
position. Using the threshold y = 0.55, we obtain 47 elements for S,
which follow:

0, 1, 2, 3, 40, 41, 42, 43, 44, 77, 78, 79, 80, 101, 102, 111, 112, 113, 114, 129, 130,

131, 132, 134, 135, 136, 137, 153, 154, 155, 156, 157, 158, 170, 171, 172, 173, 227,

228, 229, 230, 233, 234, 235, 236, 247, 248

The other 209 key bits give us a backward bias (e;) of 0.07764 experimen-
tally. In the second stage, we have used the 4-round distinguisher ZD, —
OD, = ((7,0)-(1,15)). In this stage, we obtained a set of 149 elements that
are different from the set S;. S, consists of all those 149 elements.

4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30,
31, 38, 39, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 81, 82, 83, 84, 85, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100, 103, 104, 105, 106, 107, 108, 109, 110, 115, 116, 117, 118, 119, 120, 128, 133,
138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 159, 160,
161, 162, 163, 164, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188,
189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205,
225, 226, 231, 232, 237, 238, 239, 240, 241, 242

Since there is no common elements between S; and S,, we have a total
of 196 elements in S; US,. The other 60 elements are labeled as S;, and
they are searched exhaustively. Figure 1 gives an overview of the attack.

5.1. Complexity

The key-bit set is broken into two—hence g =2—so in formula 3,
(D'I[%Prnd] = —3.2. With the value of a; =60, we get N; =264 For
ay = 160, the data complexity for the second stage becomes N, = 2!4>%,
Therefore, the total complexity for stage 2 and stage 3 becomes 21634,
which in turn makes the total time complexity of the attack approxi-
mately 2!63->%,

6. Attack on 256-bit ChaCha20/6.5

Here we present the first-ever attack on ChaCha20/6.5. We applied the
attack with two ZD — ODs. The first ZD — OD is given by Bellini et al.
(2023). The ZD — ODs we have considered here are as follows:

14 H. K. GARAI AND S. DEY

1. ID, - OD; : ((15,29)®(15,9), (2,0)B(6,7)(6, 19)B(10, 12)B(14, 0))

(Bellini et al. 2023)
2. ID,-0D,:((12,6),(1,0)B(6,7)PD(11,0))

In the first stage of preprocessing, using y = 0.6 we get 61 significant
bits, which are directly included in S;; the other 195key bits give a back-
ward bias (e,) of 0.0845. The set §; =

16, 17, 18, 19, 20, 21, 22, 23, 67, 68, 69, 73, 74, 75, 79, 80, 81, 105, 106, 107, 112,
113, 114, 120, 121, 122, 123, 124, 125, 126, 132, 133, 134, 135, 136, 137, 138, 139,
195, 196, 197, 201, 202, 203, 215, 216, 217, 227, 228, 229, 230, 236, 237, 238, 239,

240, 241, 242, 252, 253, 254
In the second stage, we have used the 4-round distinguisher. We have
set y = 0.7 and obtained S, to be a set of 109 elements after removing the

common elements from S;.

Guessy ++ |
No

count = 0;
fori=1toN;
i) { K; = Guess;, K, = Guess,, K3 = random;
Fix Gy, put Gg = random, Gg = random, Gg = random;
run Revg?s on (Z-G), (Z'- G);

Choose an IV v;

sl Guess; =0

count ++ if difference at (4,7) = 0}

Guess, ++ |

count = 0;
fori=1toN,
{ K; = Guess;, K, = Guess,, K3 = random;
Stage 2 Guess; =0 Is Guess, < 215, 2 Fix G7, put G4 = random, Gs = random, Gy = random; »
run Revs?? on (Z - G), (Z"- G");

count ++ if difference at (1,15) = 0}

&

Guessz ++

K; = Guess;, K = Guess,, K3 = Guesss;
Yes—>| Fix G;, put Gg = random, Gs = random, Gy = random;
run 7.5 Salsa round on G, Collect corresponding
keystream Zg

Is Guessz < 2131 ?

Guess3=0

The guessed
key is correct.

Figure 1. Multi-step approach on 256-bit Salsa20/7.5.

CRYPTOLOGIA 15

0,1,2,3,9, 10, 11, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 35, 36, 37, 48, 49, 50, 54, 55,
56, 57, 58, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 109, 110, 111, 115, 116,
117, 118, 119, 127, 129, 130, 131, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
150, 151, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 183, 184,
185, 194, 198, 199, 204, 205, 206, 207, 208, 209, 210, 220, 221, 222, 224, 225, 226,
231, 232, 233, 234, 235, 243, 244, 245, 246, 247, 248, 249

The rest of the 86 elements that are not in S; or S, are considered to be
in S;5. These 86 elements give a backward bias of 0.0873.

6.1. Complexity

Here, as with Salsa20/7.5, ¢ = 2, so using formula 3 we get N; = 2874 for
o; = 75. In the next stage, using o, = 120, N, = 231%_ But the whole pro-
cess has to be repeated 2> times to get a suitable IV. We have Comp, =
2109, 236.66 4 p195-120 4 786 ~ 214566 Therefore, the total complexity
becomes 2'°!74, while the overall data complexity is 27074 4- 236:66 ~ 29074,

7. Conclusion

This work focused primarily on improving forward bias and modified attack
technique. Use of a multi-step approach produces a significant improvement in
the attack complexity. This attack opens several directions for further research.
The first is whether we can tweak the attack model slightly to achieve improve-
ment in complexity, and the second is analyzing the scenario of using more than
two ZD — OD pairs to improve the attack further. We believe that this work
will lead to achieving better cryptanalytic results on Salsa family of ciphers.

About the Authors

Hirendra Kumar Garai earned his Master of Science (M.Sc.) in Mathematics from Visva-
Bharati University, India in 2018. Presently, he is in his fourth year as a doctoral student at
BITS Pilani, Hyderabad Campus, India. His research primarily centers on symmetric key
cryptanalysis.

Sabyasachi Dey got his Ph.D. in mathematics from the Indian Institute of Technology
Madras in Chennai, India, in 2018. Presently, he is an Assistant Professor at the Birla
Institute of Technology and Science (BITS) in Pilani, India. Symmetric key cryptology is
one of his main research interests.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Human Resource Development Centre, Council of Scientific and Industrial Research.

16 H. K. GARAI AND S. DEY

References

Aumasson, J., S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. 2008. New features of
Latin dances: Analysis of Salsa, ChaCha, and Rumba. Fast Software Encryption, 15th
International Workshop, Lausanne, Switzerland, Revised Selected Papers, 5086, 470-88.
doi: 10.1007/978-3-540-71039-4\ _30.

Beierle, C., G. Leander, and Y. Todo. 2020. Improved differential-linear attacks with appli-
cations to ARX ciphers. Advances in Cryptology - CRYPTO 2020 - 40th Annual
International Cryptology Conference, Santa Barbara, CA, USA, Proceedings, Part III,
12172, 329-58. doi: 10.1007/978-3-030-56877-1\ _12.

Bellini, E., D. Gerault, J. Grados, R. H. Makarim, and T. Peyrin. 2023. Boosting differen-
tial-linear cryptanalysis of chacha7 with MILP. IACR Transactions on Symmetric
Cryptology 2023 (2):189-223. doi: 10.46586/tosc.v2023.i2.189-223.

Bernstein, D. J. 2008. ChaCha, a variant of Salsa20. Workshop Record of SASC 8:3-5.
https://cr.yp.to/chacha/chacha-20080128.pdf.

Bernstein, D. J. 2008. The Salsa20 family of stream ciphers, 84-97. Berlin, Heidelberg:
Springer Berlin Heidelberg. doi: 10.1007/978-3-540-68351-3_8.

Choudhuri, A. R,, and S. Maitra. 2016. Significantly improved multi-bit differentials for
reduced round Salsa and ChaCha. Transactions on Symmetric Cryptology. 2016 (2):261-
87: doi: 10.13154/tosc.v2016.i2.261-287.

Coutinho, M., and T. C. S. Neto. 2021. Improved linear approximations to ARX ciphers and
attacks against ChaCha. Advances in Cryptology - EUROCRYPT 2021 - 40th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, Proceedings, Part I, 12696, 711-40. doi: 10.1007/978-3-030-77870-5_25.

Coutinho, M., L. Passos, J. C. G. Vdasquez, S. Sarkar, F. L. L. de Mendonga, R. T. de Sousa, Jr.,
and F. Borges. 2023. Latin dances reloaded: Improved cryptanalysis against salsa and chacha,
and the proposal of forrd. Journal of Cryptology 36 (3):18. doi: 10.1007/s00145-023-09455-5.

Crowley, P. 2005. Cryptology ePrint Archive, Paper 2005/375. Truncated differential crypt-
analysis of five rounds of salsa20. https://eprint.iacr.org/2005/375.

Dey, S., and S. Sarkar. 2017. Improved analysis for reduced round Salsa and Chacha.
Discrete Applied Mathematics 227:58-69. doi: 10.1016/j.dam.2017.04.034.

Dey, S., H. K. Garai, and S. Maitra. 2023. Cryptanalysis of reduced round ChaCha - new
attack & deeper analysis. IACR Transactions on Symmetric Cryptology 2023 (1):89-110.
doi: 10.46586/tosc.v2023.11.89-110.

Dey, S., H. K. Garai, S. Sarkar, and N. K. Sharma. 2022. Revamped differential-linear cryptanaly-
sis on reduced round ChaCha. Advances in Cryptology - EUROCRYPT 2022 - 41st Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Trondheim, Norway, Proceedings, Part III, 13277, 86-114. doi: 10.1007/978-3-031-07082-2\ _4.

Fischer, S., W. Meier, C. Berbain, J.-F. Biasse, and M. J. B. Robshaw. 2006. Non-randomness
in estream candidates salsa20 and TSC-4. In R. Barua and T. Lange, editors, Progress in
Cryptology - INDOCRYPT 2006, 7th International Conference on Cryptology in India,
Kolkata, India, December 11-13, 2006, Proceedings, volume 4329 of Lecture Notes in
Computer Science, 2-16. Springer. doi: 10.1007/11941378\ _2.

Garai, H. K. 2023. 256-bit-salsa20-7. GitHub repository. https://github.com/namenotpub-
lished/256-bit-Salsa20-7.git.

Maitra, S. 2016. Chosen IV cryptanalysis on reduced round ChaCha and Salsa. Discrete
Applied Mathematics 208:88-97. doi: 10.1016/j.dam.2016.02.020.

Tsunoo, Y., T. Saito, H. Kubo, T. Suzaki, and H. Nakashima. 2007. Differential cryptanalysis
of Salsa20/8. SASC- The State of the Art of Stream Ciphers.

https://doi.org/10.1007/978-3-540-71039-4_30
https://doi.org/10.1007/978-3-030-56877-1_12
https://doi.org/10.46586/tosc.v2023.i2.189-223
https://cr.yp.to/chacha/chacha-20080128.pdf.
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.13154/tosc.v2016.i2.261-287
https://doi.org/10.1007/978-3-030-77870-5_25
https://doi.org/10.1007/s00145-023-09455-5
https://eprint.iacr.org/2005/375.
https://doi.org/10.1016/j.dam.2017.04.034
https://doi.org/10.46586/tosc.v2023.i1.89-110
https://doi.org/10.1007/978-3-031-07082-2_4
https://doi.org/10.1007/11941378_2
https://github.com/namenotpublished/256-bit-Salsa20-7.git.
https://github.com/namenotpublished/256-bit-Salsa20-7.git.
https://doi.org/10.1016/j.dam.2016.02.020

	A multi-step key recovery attack on reduced round Salsa and ChaCha
	ABSTRACT
	Introduction
	Design principles of the Salsa and ChaCha family
	Outline and contribution

	Cryptanalysis of Salsa and ChaCha
	Probabilistic neutral bits
	Previous attacks on these ciphers
	Correction of the complexity in the attack of Choudhuri and Maitra (2016)

	New cryptanalysis of 256-bit Salsa20/7 using multiple (ID−OD) pairs
	New distinguishers and right pairs
	Preprocessing: key-bit partitioning into three subsets
	Online phase
	Data collection
	Key recovery

	Complexity formula
	Complexity formula for our new attack approach
	Complexity of our attack on 256-bit Salsa20/7

	Attack on 256-bit Salsa20/7.5
	Complexity

	Attack on 256-bit ChaCha20/6.5
	Complexity

	Conclusion
	Disclosure statement
	Funding
	References

