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Abstract

Our paper addresses a fundamental (but naive) question in the foundations of cryp-
tography: Why haven’t the hosts of well-known NP-hard combinatorial problems been
of use in designing cryptosystems? We offer three replies which differ radically from
the conventional wisdom.

(1) There is no good reason why NP-hard problems cannot serve as the basis for useful
public-key cryptosystems. In particular, we argue that a number of general arguments
concerning this issue that are commonly found in the literature (in particular, those
centering on Brassard’s Theorem) are specious and circular.

(2) There are plenty of public-key cryptosystems based on NP-hard combinatorial prob-
lems! We describe a general method for constructing public-key cryptosystems based
on virtually any kind of problem, yielding an interesting and natural class of public-key
cryptosystems which we shall call CA (combinatorially algebraic). We show that NP
can be characterized as precisely the class of problems which support public-key cryp-
tosystems in CA. We show that there are public-key systems in CA that are complete,
in the sense that they are hardest to crack for the class.

(3) The distinction between combinatorial and algebraic problems is misleading and
artificial. Our constructions are based on ideals in polynomial algebras generated by
a combinatorially derived basis, and seem to have a foot in both camps. We report a
number of general theorems concerning this construction, and point to several direc-
tions that merit further investigation. In particular, we raise some issues which would
appear to be crucial in any practical version of these systems.

nvited address at the Second International Symposium on Finite Fields, Las Vegas, July 1993, to appear
in the AMS Contemporary Mathematics Series.



1 Introduction

Following the early failure of knapsack-based public-key cryptosystems, a variety of ex-
planations concerning this failure began to appear both in print and in the “folklore” of
cryptography. The main point of much of this discussion seems to have been to argue that
the many familiar NP-complete combinatorial problems (such as Knapsack) are unsuitable
as a basis for cryptographic systems — that cryptography must be based on problems of
“intermediate difficulty,” such as factoring and discrete logarithms.

The following are two expressions of this “common knowledge” that have appeared in
prominent surveys of the field.

.. several other doubts were raised that applied specifically to knapsacks and other sys-
tems based on NP-complete problems. On a very abstract level there is an interesting
result of Brassard [3] that says essentially that if breaking a cryptosystem is NP-hard,
then NP=coNP, which would be a very surprising complexity theory result. Thus, if
NP=£coNP, then breaking the Merkle-Hellman cryptosystem cannot be NP-hard, and
so is likely to be easier than solving the general knapsack problem.

There can be no hope to transform arbitrary problems in NP—P into public-key cryp-
tosystems.

The first purpose of this paper is to refute the thesis that garden-variety hard combinato-
rial problems are unsuitable as a basis for cryptosystems. In particular, Brassard’s Theorem
provides no discernible basis for arguing against the possibility of useful combinatorially
based cryptography.

Outsiders (and newcomers) to the field of cryptography are often struck by the fact that
the hosts of natural NP-hard problems seem to be so barren of employment. Apart from
the theoretical arguments against combinatorics-based cryptography cited above, one also
encounters a relative paucity of concrete proposals for this kind of cryptosystem.

The second purpose of this paper is to describe a completely general way in which
problems in NP can serve as the basis for public-key cryptosystems for which an effective
cryptanalytic attack is at present unknown. These “combinatorially algebraic” (CA) cryp-
tosystems appear to be of intrinsic mathematical interest as well as hard to crack. Somewhat
tongue-in-cheek, we will describe a general California-Style Cryptosystem for which the first
step begins as follows.

CA-style public-key cryptography



Step 1. In the privacy of your beach condominium, choose your favorite NP-complete
problem and ... (to be continued).

We shall characterize NP as the class of decision problems suitable as a basis for Cali-
fornia Cryptography. We also define a notion of completeness for the cracking problems in
the class CA, and prove that cryptosystems may be CA-complete, i.e., hardest to crack.

The mechanics of California Crypto is concerned with ideals in polynomial rings, where
the set of polynomials generating the ideal is chosen combinatorially. Because the mathemat-
ical objects and issues involved are quite standard, we believe that California Cryptography
cannot be faulted for exoticism. Many of the associated complexity issues (e.g., the cracking
problem) appear to be of natural mathematical interest, independently of cryptography.

This raises a third issue concerning which we hope to stimulate discussion. What exactly
does “combinatorial” mean in the context of cryptography? We argue that the distinction
between “combinatorial” and “algebraic” (or “number theoretic”) is artificial and unpro-
ductive. In fact, our proposed cryptosystems represent an algebraicization of combinatorics
that is similar in some respects to a number of productive new approaches in complexity
and combinatorics (such as [1] and [15]).

We cannot yet say whether the cryptosystems we describe have potential practical merit.
Some of the issues involved are discussed in §4.3. In particular, we do not know if any variants
of these systems are random-self-reducible or are likely to be hard-on-average. Moreover,
in their present form the systems we describe are very inefficient (requiring a polynomial
amount of work to encrypt a single bit).

Our main purpose is to contribute to clarifying and widening the discussion about the
kinds of problems that might serve as the basis for modern cryptosystems.

2 California Crypto

Let X represent your favorite NP-complete problem, as in the scenario (Step 1) suggested
in the previous section. For concreteness in what follows, let us suppose you have chosen X
to be Graph 3-Colorability. We further fix attention on the field F, of two elements, over
which we will consider various polynomial ideals. Suppose that our message consists of a
single bit (an element of the field F3).

The following in an overview of how to implement a public-key cryptosystem based on
X.

The public key is the graph G = (V, F).



The private key is a proper 3-coloring of G.

The probabilistic encryption of the message m € F; consists in creating a polynomial ¢ with
the properties:

(1) If one evaluates ¢ according to any substitution ¢ for the variables of ¢ that corresponds
canonically to a proper 3-coloring of G, one obtains ¢(t) = m.

(2) If one evaluates ¢ according to any substitution s that does not correspond canonically
to a proper 3-coloring of G, then the result ¢(s) is randomly distributed.

The encryption method is based on a polynomial-sized set B = {¢;} of basis polynomials
canonically associated to G. These polynomials have the properties: (1) a substitution
vector t is in the affine variety V(B) if and only if ¢ canonically corresponds to a proper
3-coloring of G; and (2) knowledge of such an Fy-point ¢ of V(B) is equivalent to knowledge
of a proper 3-coloring of G. To send a message m we randomly construct a polynomial p
in the ideal J(B) generated by B. Then the ciphertext polynomial ¢ is set equal to p + m.
The construction of the polynomial p is discussed briefly in §3. For this initial discussion,
we make the following assumption:

* A random polynomial p € J(B) of size and degree specified by security parameters
can be efficiently generated.

The recipient Alice, who knows a 3-coloring of G and hence an Fy-point ¢ of V(B), simply
computes ¢(t) = p(t) +m = m.

We next describe the CA cryptosystems based on Graph 3-Colorability and Circuit
Satisfiability in more detail, i.e., we describe the construction of B = {¢;}.

Example 1. A public-key system based on Graph 3-Colorability

Let G = (V, E) be the public key. We describe a basis B of polynomials over the set of
variables T'= {t,; : we€ V, 1 <i <3}. Let B= By U By U B; where

By = {ty1 +tup +tuz+1:ucV}

By = {tyituz + tustus + tuitus :u € V};
Bs = {tyaty1 + tusty2 + tustes : uv € E}.

The vertex coloring which assigns the color i, (1 <7, < 3) to the vertex u (u € V) is
associated to the substitution ¢ which sets the variable ¢, ;, equal to 1 and the other two of
the variables {t,1,t.2,t.3} equal to 0. It is easy to see that a substitution ¢ is in the affine
variety V' (B) (that is, ¢(t) = 0 for every polynomial ¢ € B) if and only if ¢ corresponds to a
proper 3-coloring of G.



Example 2. A public-key system based on Circuit Satisfiability

Let C' be a boolean circuit (the public key). We assume that C' consists of and, or and
not gates, with the and and or gates having fan-in and fan-out equal to 2, and the not gates
having fan-in and fan-out equal to 1. (We allow that some of the fan-out lines go nowhere,
i.e., are ignored.) The circuit C' has a single output line, corresponding to a variable z.

We describe a basis B of polynomials in a set of variables that are in one-to-one corre-
spondence with the lines of C' (including the input lines). For each gate g in the circuit we
describe a small set of polynomials B, which enforce the proper operation of the gate. Then

B= (LgJBg> U{z+1}.

If g is an or gate with input variables s, t and output variables u, v then the enforcement
set By is
By={u+v, st+uv+s+t}.

(For an and gate take B, = { u + v, st+ uv}; for a not gate with input variable s and
output variable u take B, = {s +u + 1}; and for an input gate with input variable s and
output variables u; take B, = {s+ u;};.)

Another example of a CA cryptosystem, based on the NP-complete problem Perfect
Codes in Graphs, can be found in [11]. After examining a few such examples, one sees that
these cryptosystems are quite easy to develop, starting from virtually any problem. For
these cryptosystems, the description of the generating set of polynomials resembles a typical
direct NP-completeness reduction from the problem X to CNF Satisfiability, only couched
in terms of the annihilation of polynomials rather than the satisfaction of clauses. How far
can we go with this?

We use the field Fy, as before, and we let ¥ = {0,1}. Let R C ¥* x ¥*. We say that R is
P-honest if there is a polynomial ¢ such that (x,y) € R implies |z| < ¢(Jy|) and |y| < ¢(]z|).
We say that R is P-checkable if there is a polynomial-time algorithm to recognize R. The
domain of R is the set dom(R) = {x : Jy (x,y) € R}.

Definition. A combinatorially algebraic (CA) public-key cryptosystem consists of:

(1) A P-honest, P-checkable relation R.

(2) A polynomial-time algorithm B that on input x produces a set B(z) = {¢; : i € I} of
polynomials in a set of variables t1,...,t,,, such that

(z,y) € R if and only if |y| = m and Vg; € B(z) ¢:(y) = 0 in the field F5, where the
evaluation ¢;(y) is defined by setting ; equal to the value of the i** bit of y.



A public key for CA[R] is an x € dom(R). A private key for = is a y such that (z,y) € R.
We have the following relationship between CA and NP.

Theorem 1. A set X € NP if and only if X is the domain of a CA public-key cryptosystem
R.

Proof. In one direction the theorem is trivial; a certificate for the membership claim
x € X can be a y such that (z,y)inR, and checking consists in generating the polynomials
B(z) for x and seeing that y annihilates them. In the nontrivial direction, we may assume
that R has the further property that for (x,y) € R the length of y depends only on the
length of z. Given z, in polynomial time using the techniques in the proof that the Circuit
Value Problem is logspace complete for P, we can construct a decision circuit C), such that
C.(y) = 1 if and only if (x,y) € R. The basis polynomials are then generated as in Example
2 above. O

We see now that, contrary to the statement in [20] cited in §1, every problem X in
NP has a naturally associated public-key cryptosystem (perhaps several, since we may have
X = dom(Ry) = dom(Rz)). Note that if X € P and the relation R is natural, then the
cryptosystem can be cracked in polynomial time (even under the above assumption *). It
is natural to ask whether there is a hardest public-key cryptosystem in CA. We first define
what can naturally be regarded as the cracking problem under assumption * (see further
discussion of this in §4.1).

Definition. For a public-key cryptosystem CA[R] €CA the cracking problem is specified as
follows:

Input: The public key x, and the ciphertext polynomial gq.

Promise: For some y, (x,y) € R, and either ¢ € J(B(z)) or ¢+ 1 € J(B(x)).

Question: Is ¢ € J((B(x))?

In other words, the cracking problem is to find the value of ¢ under a “valid” substitution
y, i.e., one for which (z,y) € R.

Definition. We say that a public-key cryptosystem CA[R] in the class of cryptosystems CA
is CA-complete if for all CA[R'] €CA, the cracking problem for CA[R'] reduces in polynomial
time to the cracking problem for CA[R].

Example 3. The “generic” CA-system Polly Cracker

The relation R in this case is the set of pairs (x,y) that are P-honest for some fixed
polynomial, where z is a set of polynomials {¢;}, and y is a substitution vector such that
¢i(y) = 0 for all 1.

Informally speaking, the Polly Cracker cryptosystem works as follows. Alice randomly



chooses a secret fixed vector y and a set of polynomials {¢;} which vanish on y. Her public
key is {¢;}. To send her a bit m, Bob generates a sum p = 3" ¢;¢;, and sends Alice the
polynomial p + m.

In the cracking problem for this generic CA cryptosystem, the basic problem in both
the promise and the question is Ideal Membership. The decision problem “g € J?” and the
search problem “Find the coefficients g; of the ¢;” have been studied extensively; in the special
case ¢ = 1 the search problem is called “effective Nullstellenzatz.” See [6, 14, 7, 16]. Upper
bounds for the degree of the g; and for the field extension degree of a point in the variety
J(B) are exponential or superexponential. Hence, it seems likely that Ideal Membership is
in neither NP nor coNP.

Theorem 2. The public-key cryptosystem CA[Polly Cracker| is CA-complete.

Proof. This is quite easy, since all other cryptosystems in CA can be viewed as special
cases. O

We note that completeness in this sense does not imply (and the reductions would not
be expected to respect) any hard-on-average properties that the cryptosystems may have,
and thus it is not the appropriate criterion for identifying hard to crack cryptosystems.
Nevertheless it would be interesting to know if other combinatorial cryptosystems are CA-
complete.

3 Security of CA-Cryptosystems

We know of two ways to break such a cryptosystem: (1) by solving the underlying combi-
natorial problem (3-Coloring, Circuit Satisfiability, Perfect Code, or whatever); and (2) by
linear algebra. The linear algebra cryptanalysis works as follows. Let 7" denote the set of
variables in B = {¢;}, and let ¢ be a polynomial in T of degree d over F; such that either g
or ¢+ 1 belongs to J(B). One attempts to find coefficient polynomials g; of degree d—deg(g;)
such that > g;q; = q or ¢ + 1. One does this by regarding the coefficients of the monomials
in the g; as unknowns, and equating nonconstant monomial terms of Y g;¢; and q.

How time-consuming is this linear algebra? If M is the cardinality of B and N is the
number of variables T, then the time is clearly polynomial in M (d}LVN). But the time for
the linear algebra is not necessarily polynomial in the length of the input ¢. Namely, one
can construct “sparse” polynomials ¢ that have very few nonzero monomial terms compared
with an average polynomial in T" of degree d. For instance, one might construct polynomials
q that have only e©@, rather than O(N?), nonzero monomial terms. For more details (in
the case of CA[Perfect Codel), see [12].



4 Combinatorially-Based Cryptography: Prospects
Revised

By exhibiting a “galore” of public-key cryptosystems based on familiar hard problems of
combinatorics, we have called into question the “folklore” that such problems are unsuitable
for cryptography. At this point we should reexamine the theoretical basis for this folklore.

As mentioned before, the theoretical argument started with a theorem of Brassard [3]

which stated, roughly speaking, that cryptanalysis of a system based on a one-way function
cannot be NP-hard unless NP=coNP.

We note at the outset that an important distinction must be made between two types of
one-way functions. One type of one-way function is the encryption function, whose inversion
is the cracking problem in the sense of [20]. The other type of one-way function is the
underlying function in the construction of the trapdoor for the system.

In combinatorial cryptosystems of the class CA, the first type of one-way function —
the encryption function — is a hybrid. Although one starts by constructing an instance of
a combinatorial problem, the actual cracking problem is algebraic. As explained above, it
is a special case of Ideal Membership. Thus, nothing can be concluded about the cracking
problem even if the underlying combinatorial problem is NP-hard.

4.1 Inapplicability of Brassard’s Theorem

We next deal with the second type of one-way function — the construction used to form
the trapdoor for the system. This is the type of one-way function considered in Brassard’s
original article [3], where RSA and discrete logarithm were used as examples. For instance,
the underlying function in RSA is the multiplication map on P x P, where P is the set
of primes. In Brassard’s theorem this one-way function must satisfy the condition that its
image is in coNP. Although the coNP condition tends to hold for number-theoretic functions
(e.g., the RSA and discrete log examples in [3]), below we shall see that in general the
condition most likely does not hold for combinatorial one-way functions. Thus, it is circular
to argue from Brassard’s Theorem that number-theoretic trapdoor constructions are more
suitable than combinatorial constructions.

Consider, for example, CA[3-Colorability|. Let A,, be the set of n x n adjacency matrices
(i.e., symmetric matrices of 0’s and 1’s). Let A/ C A, be the subset of matrices with the
following property: there exists a partition n = n; 4+ ns + n3 such that there are only 0’s
in the three square blocks along the main diagonal of size ny x n; (the intersection of the
first ny rows and first n; columns), ny X ns (the intersection of the next ny rows and next ngy



columns), and ng X n3 (the intersection of the last ng rows and last n3 columns). Let S, be
the symmetric group, and set S = U, (A}, x S,,). Let ¢ : S — {graphs} be the map which,
given (M,o0) € Al x S, constructs the graph on vertices us, ..., u, with adjacency matrix
M and then relabels the vertices according to the permutation o. Clearly ¢ gives a one-way
construction of 3-colorable graphs; its image consists of all 3-colorable graphs.

Theorem 4. If ¢ satisfies the coNP condition in Brassard’s Theorem, then NP=coNP.

Proof. If the image of ¢ were in coNP, then NP=coNP because the problem of determining
whether a graph is 3-colorable is NP-complete. O

4.2 Other Combinatorial Systems

In general, one-way constructions of trapdoors that are combinatorially based seem not to
satisfy the coNP condition in Brassard’s Theorem. In other words, Brassard’s Theorem is not
applicable to such systems. Theorem 4 above showed this in the case of a typical CA-system.
We now illustrate this point in the case of two other combinatorially based cryptosystems
that have been proposed (see [13, §]).

4.2.1 Reversible cellular automata

Following [13], let {.A;} be a set of reversible cellular automata that are easy to invert. The
one-way map that Kari’s cryptosystem is based upon is the map from finite sequences of the
A; to reversible cellular automata A given by composition:

(A’i17"‘7*’4il) — A:A’ho"'oAil-

Alternately, one might use the restriction of this function to sequences of some bounded
length [ < L. In either case, the coNP condition in Brassard’s theorem probably does not
hold for this one-way function: how could one possibly have a witness that a given A does not
decompose into such a product? Unlike in the RSA example in Brassard’s paper — where
the one-way function is multiplication restricted to the prime numbers — reversible cellular
automata do not have “unique factorization.” That is, in RSA the prime factorization of n
into a product of > 2 primes is a witness that n is not in the image of (p,q) — p - ¢; but
in the case of cellular automata, even if one expresses A as a composite of > L elementary
A; or expresses A as a composite of elementary automata that are not among the {A;}, one
cannot conclude that A is not in the image of the above one-way map.



4.2.2 Rewrite systems

Following [8], let G be an arbitrary group given by a finite set of generators {cy,...,c,} and
a finite set of relations {Ry,..., R, }. Without loss of generality we may assume that for
each relation R;, its inverse R;l is also included among the Ry, ..., R,,. Let ug and u; be
fixed elements of G.

Suppose that plaintext message units are sequences of N bits. By letting 0 and 1
correspond to ug and uy, respectively, we may regard a plaintext message as a word of length
N in the ug,u; (in which uy and u; appear only to the first power). The one-way function
consists of successively inserting various R; in words written in terms of the ¢;. That is, one
starts with the word wu, - - - ue, (where € --- €y is an arbitrary sequence of N bits), written
as a word in the 2n symbols ¢; and ¢; ' (with any adjacent cc™! canceled). For any pair of
natural numbers j, k with j < m, let 0, denote the following operation on a word in the
ci,¢; 't insert R; between the (k — 1)-th symbol and the k-th symbol of the word (insert it at
the end of the word if k is greater than the length of the word), and then cancel any terms
of the form cc™!. The one-way function is the map from {0, 1}" x {finite sequences of pairs
4, k} to words in ¢;, ¢; ! given by

ek sk (Ok 0 0 Ok ) (Ue e Uey)-

If the image of this one-way function satisfied the coNP condition in Brassard’s theorem,
then, in particular, there would exist a witness of nonmembership in the image of the zero-
plaintext u{’. That is, every g € G for which the word uy "¢ is not equivalent to 1 in the
group would have a witness that certifies this in polynomial time. Such an eventuality is
highly unlikely, in view of the undecidability of the word problem in group theory (see [18]).

4.3 Questions Concerning Implementation

1. Can CA-systems be made efficient? Working over larger fields than F% might help.
In addition, one could have a ciphertext polynomial convey more than just one field element.
But at present we do not see how to make CA-systems competitive with the commonly used
public-key systems.

2. What one-way constructions lead to hard instances of the NP problem X for
use in CA[X]? A difficulty here (as with some proposed implementations of zero-knowledge
protocols) is that it is not known whether invulnerable generators for hard problems exist (see
2, 10]). What is known is that if any NP-complete problem has an invulnerable generator,
then so does every NP-complete problem [10].

3. For what CA-systems is the cracking problem hard-on-average? Are there

10



suitable versions that are random-self-reducible (see [9])7 If one uses arbitrary
degree d polynomials in J(B), then one has random-self-reducibility. However, to avoid
a polynomial time linear algebra attack, one should use sparse polynomials, as mentioned
above. The sparseness property is not preserved under addition, so this destroys the random-
self-reducibility.

These questions seem to be interesting targets for further investigation.
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