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Abstract—We propose a fault injection attack on Salsa20 and
ChaCha stream ciphers. In these stream ciphers, the initial
matrix X , which consists of constants, a key, a block counter,
and a nonce, is added to the matrix X(20) process with a round
function to generate a keystream. Our proposed fault injection
attack skips the corresponding addition (add) instruction to
obtain the matrix X or X(20) and extracts the key. General
countermeasures against instruction skipping, including random-
ization, duplication, and parity checking, are not suitable for the
software implementation of a stream cipher that requires high
performance and lightweight computation. We thus demonstrate
an algorithm-specific but extremely lightweight countermeasure
with less than 0.5% execution time overhead based on a variable
separation technique. Furthermore, we study the feasibility of the
countermeasure in the IA-32, Intel 64, and ARM architectures.

I. INTRODUCTION

Salsa20 [1] and ChaCha [2], [3] are stream ciphers designed

by Bernstein. These stream ciphers have the following fea-

tures: 1) the round function contains only addition, exclusive-

or, and fixed-distance rotations, 2) random access to a cipher-

text is possible by specifying an appropriate block number and

generating a 512-bit keystream.

Salsa20 is selected as a Profile I (for software implemen-

tation) in the eStream project, which is a standardization

project for stream ciphers in European countries. Nir and

Langley designed a sign-encryption ChaCha20-Poly1305[3]

by combining Poly1305 [4] as designed by Bernstein and

ChaCha with 20 rounds. ChaCha20-Poly1305 is used in

Google services and has been adopted by OpenSSH. TLS 1.3

is going to support ChaCha20-Poly1305.

This paper proposes a fault injection attack against software

implementation of stream ciphers Salsa20 and ChaCha. We

show a procedure to extract the key that skips the add
instruction in the key generation process and countermeasures

based on a variable separation technique. Furthermore, we

demonstrate an algorithm-specific but extremely lightweight

countermeasure with less than 0.5% execution time over-

head based on a variable separation technique. A software

implementation of a stream cipher is required to achieve

high performance and lightweight computation; and general

countermeasures against instruction skipping including ran-

domization, duplication (dual/triple modular redundant), and

parity checking may not be applicable. Then, we study the

feasibility of a variable separation countermeasure in the IA-

32 and Intel 64 and ARM architectures.

II. RELATED WORK

Boneh et al. [5] proposed a theoretical model to break

cryptographic schemes by taking advantage of random hard-

ware faults. They demonstrated that their attack applies to

implementations of RSA and Rabin signatures. Biham and

Shamir [6] showed that secret key cryptosystems are vulnera-

ble to a fault injection attack. They proposed a different fault

model, one that can break DES by analyzing a small number

of ciphertexts. Blömer and Seifert [7] applied an optical fault

injection attack [8] and an implementation-dependent attack

including timing attack [9] to AES. Piret and Quisquater [10]

proposed a differential fault injection attack against SPN struc-

tures applicable to AES and KHAZAD. Chen and Yen [11]

proposed a differential fault attack on the AES key schedule.

Tunstall et al. [12] proposed a differential fault injection attack

on AES based on a single fault. Roche et al. [13] proposed

a combined differential fault injection and side-channel attack

on AES.

Fouque et al. [14] shows that fault injection attack can

be used to execute arbitrary code. A fault injection attack

based on instruction skipping used on the square and multiply

operation was proposed by Schmidt and Herbst [15]. Barenghi

et al. [16] proposed an attack using instructions against AES

and RSA. Bar-El et al. [17] and Trichina and Korkiyan [18]

demonstrated that instruction skipping can be brought about

a laser pulse. Dehbaoui et al. [19] and Morno et al. [20]

showed that instruction skipping can be brought about using an

electromagnetic pulse. Instruction skipping based on a glitchy

clock signal was proposed by Balasch et al. [21], Korak and

Hoefler [22], Endo et al. [23], and Yuce et al [24].

The first fault injection attacks against stream ciphers were

introduced by Hoch and Shamir [25], which described attacks

against LILI-128 and SOBER-t32 and RC4. Other stream

ciphers including SNOW 3G [26], Trivium [27], HC-128 [28],

Rabbit [29], [30], Sosemanuk [31], Mugi [32] and MICKEY

2.0 [33], [34] have been analyzed using fault injection attack.

III. ALGORITHM DESCRIPTION: SALSA20 AND CHACHA

We describe here the algorithms of Salsa20 and ChaCha.

ChaCha is a variant of Salsa20, and we show how it the differs
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from Salsa20.

A. Salsa20
The stream cipher Salsa20 operates on 32-bit words, takes as

input a 256-bit key K = ( k 0 , k 1 , k 2 , k 3 , k 4 , k 5 , k 6 , k 7 ) or 128-

bit key K = ( k 0 , k 1 , k 2 , k 3 ) and a 64-bit nonce N = ( n 0 , n 1 ),

and produces a sequence of 512-bit keystream blocks. The C -

th block is the output of the Salsa20 function that takes as input

the key, the nonce, and a 64-bit block counter C = ( c0 , c 1 )
corresponding to the integer i . This function acts on the 4 × 4
matrix of 32-bit words written as;

X =

�

�
�
�

x 0 x 1 x 2 x 3

x 4 x 5 x 6 x 7

x 8 x 9 x 1 0 x 1 1

x 1 2 x 1 3 x 1 4 x 1 5

�

�
�
�

=

�

�
�
�

� 0 k 0 k 1 k 2

k 3 � 1 n 0 n 1

c0 c1 � 2 k 0

k 1 k 2 k 3 � 3

�

�
�
� (for a 256-bit key)

or

�

�
�
�

� 0 k 0 k 1 k 2

k 3 � 1 n 0 n 1

c0 c1 � 2 k 4

k 5 k 6 k 7 � 3

�

�
�
� (for a 128-bit key)

dependent on the key length, where � and � are constants

such that � 0 = 0x61707865, � 1 = 0x3320646E, � 2 =
0x79622D32, � 3 = 0x6B206574, � 0 = 0x61707865, � 1 =
0x3120646E, � 2 = 0x79622D36, and � 3 = 0x6B206574.

The keystream block Z is defined as; Z = X + X ( 2 0 ) , where

X ( r ) = Roundr (X ) is the round function of Salsa20 and +

is word-wise addition modulo 23 2 . If Z = X + X ( r ) , it is

called “r-round Salsa20” or “Salsa20/r”. The round function

consists of the following nonlinear functions that are called

quarter-round functions. A vector (a, b, c, d ) of four words is

transformed as;

b � b � ((a + d ) � 7)
c � c � ((b + a) � 9)
d � d � ((c + b) � 13)
a � a � (( d + c) � 18) .

The quarter-round functions are applied to columns

( x 0 , x 4 , x 8 , x 1 2 ), ( x 5 , x 9 , x 1 3 , x 1 ), ( x 1 0 , x 1 4 , x 2 , x 6 ) and

( x 1 5 , x 3 , x 7 , x 1 1 ) in odd rounds, and rows ( x 0 , x 1 , x 2 , x 3 ),

( x 5 , x 6 , x 7 , x 4 ), ( x 1 0 , x 1 1 , x 8 , x 9 ) and ( x 1 5 , x 1 2 , x 1 3 , x 1 4 ) in

even rounds. Algorithm 1 describes the complete procedure

of Salsa20.

B. ChaCha
ChaCha is similar to Salsa20 except for the following three

modifications;

Algorithm 1 Salsa20

Require: Key K , Block Counter C and Nonce N
Ensure: Keystream Z

X � InitialMatrix(K, C, N )
Y � X
for i = 0 upto 9 do

/ * Column Round * /
( x 0 , x 4 , x 8 , x 1 2 ) � QuarterRound( x 0 , x 4 , x 8 , x 1 2 )
( x 5 , x 9 , x 1 3 , x 1 ) � QuarterRound( x 5 , x 9 , x 1 3 , x 1 )
( x 1 0 , x 1 4 , x 2 , x 6 ) � QuarterRound( x 1 0 , x 1 4 , x 2 , x 6 )
( x 1 5 , x 3 , x 7 , x 1 1 ) � QuarterRound( x 1 5 , x 3 , x 7 , x 1 1 )
/ * Row Round * /
( x 0 , x 1 , x 2 , x 3 ) � QuarterRound( x 0 , x 1 , x 2 , x 3 )
( x 5 , x 6 , x 7 , x 4 ) � QuarterRound( x 5 , x 6 , x 7 , x 4 )
( x 1 0 , x 1 1 , x 8 , x 9 ) � QuarterRound( x 1 0 , x 1 1 , x 8 , x 9 )
( x 1 5 , x 1 2 , x 1 3 , x 1 4 ) � QuarterRound( x 1 5 , x 1 2 , x 1 3 , x 1 4 )

end for
Z � X + Y
return Z

1) The composition of the four quarter-round functions are

defined as below;

a � a + b
d � d � a
d � d � 16
c � c + d
b � b � c
b � b � 12
a � a + b
d � d � a
d � d � 8
c � c + d
b � b � c
b � b � 7 .

2) The composition of the initial matrix defined as below1;

X =

�

�
�
�

� 0 � 1 � 2 � 3

k 0 k 1 k 2 k 3

k 0 k 1 k 2 k 3

n 0 n 1 c0 c1

�

�
�
� (for a 256-bit key)

or

�

�
�
�

� 0 � 1 � 2 � 3
k 0 k 1 k 2 k 3

k 4 k 5 k 6 k 7

v 0 v 1 i 0 i 1

�

�
�
� (for a 128-bit key).

3) The quarter-round functions are applied to the columns

( x 0 , x 4 , x 8 , x 1 2 ), ( x 5 , x 9 , x 1 3 , x 1 ), ( x 1 0 , x 1 4 , x 2 , x 6 )
and ( x 1 5 , x 3 , x 7 , x 1 1 ) in odd rounds, and diagonals

1The IETF version [3] of ChaCha takes a 32-bit block counter C = ( c0)
and 96-bit nonce N = ( n0, n1, n2) , and x12 = c0 , x13 = n0 , x14 = n1 ,
x15 = n2 . Furthermore, a 128-bit key is out of scope in the IETF version.
However, this difference does not affect our proposed attack.
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Algorithm 2 ChaCha
Require: Ke† K , Block CounterC , and Nonce N
Ensure: Ke†stream Z

X � InitialMatrix( K, C, N )
Y � X
for i � 0 to 9 do

/* Column Round */
( x 0 , x 4 , x 8 , x 1 2 ) � QuarterRound( x 0 , x 4 , x 8 , x 1 2 )
( x 1 , x 5 , x 9 , x 1 3 ) � QuarterRound( x 1 , x 5 , x 9 , x 1 3 )
( x 2 , x 6 , x 1 0 , x 1 4 ) � QuarterRound( x 2 , x 6 , x 1 0 , x 1 4 )
( x 3 , x 7 , x 1 1 , x 1 5 ) � QuarterRound( x 3 , x 7 , x 1 1 , x 1 5 )
/* Diagonal Round */
( x 0 , x 5 , x 1 0 , x 1 5 ) � QuarterRound( x 0 , x 5 , x 1 0 , x 1 5 )
( x 1 , x 6 , x 1 1 , x 1 2 ) � QuarterRound( x 1 , x 6 , x 1 1 , x 1 2 )
( x 2 , x 7 , x 8 , x 1 3 ) � QuarterRound( x 2 , x 7 , x 8 , x 1 3 )
( x 3 , x 4 , x 9 , x 1 4 ) � QuarterRound( x 3 , x 4 , x 9 , x 1 4 )

end for

Z � X + Y
return Z

Algorithm 3 Implementation 1 of ChaCha
Require: Ke† K , CounterC , and Nonce N
Ensure: Ke†stream Z

X � Initial Matrix( K, C, N )
Z � X
X � X ( 2 0 )

for i � 0 to 15 do

z i � z i + x i
end for

return Z

( x 0 , x 5 , x 1 0 , x 1 5 ) , ( x 1 , x 6 , x 1 1 , x 1 2 ) , ( x 2 , x 7 , x 8 , x 1 3 )
and ( x 3 , x 4 , x 9 , x 1 4 ) in even rounds.

Algorithm 2 describes the complete procedure of ChaCha.

IV. PROPOSED A TTACK

The ke† streams of Salsa20 and ChaCha are calculated
as the summation of the initial matrixX and the matrix
X ( 2 0 ) processed b† the round function. Our proposed fault
injection attack makes Salsa20 and ChaCha output the words
of the matrixX or X ( 2 0 ) depending on their implementations.
Algorithm 3 and 4 shows the implementations of Salsa20
and ChaCha. An adversar† can obtain the elements of the
initial matrixX or the matrixX ( 2 0 ) processed b† the round
function b† skipping the add instruction of the �rst or second
implementation, respectivel†. The adversar† can extract the
ke† from both X and X ( 2 0 ) since the round functions of
Salsa20 and ChaCha are invertible.

A. Invertibility of Round Function

The quarter-round functions of Salsa20 and ChaCha contain
onl† additions, exclusive-or, and constant-distance rotations.

Algorithm 4 Implementation 2 of ChaCha
Require: Ke† K , CounterC , and Nonce N
Ensure: Ke†stream Z

X � Initial Matrix( K, C, N )
Z � X ( 2 0 )

for i � 0 to 15 do

z i � z i + x i
end for

return Z

These basic operations can be described as follows;
add : ( x , y ) �� ( x + y , y ) ,
xor : ( x , y ) �� ( x � y , y ) ,
rotl ( n ) : x �� x � n,

and the† are invertible;
addŠ 1 = sub : ( x , y ) �� ( x Š y , y ) ,
xorŠ 1 = xor : ( x , y ) �� ( x � y , y ) ,
rotl ( n ) Š 1 = rotr ( n ) : x �� x � n.

The quarter-round functions of Salsa20 and ChaCha are thus
invertible. The inverse quarter-round function of Salsa20 is
given as;

a � a � ( ( c + d ) � 18)

d � d � ( ( b + c) � 13)

c � c � ( ( a + b) � 9)

b � b � ( ( a + d ) � 7) ,

and that of ChaCha is given as;
b � b � 7

b � b � c
c � c Š d
d � d � 8

d � d � a
a � a Š b
b � b � 12

b � b � c
c � c Š d
d � d � 16

d � d � a
a � a Š b.

The round function of ChaCha consists of four quarter-round
functions and distinct 4-tuples of words are processed with
the quarter-round functions. Thus, the round function is also
invertible. There is no entrop† loss in the process of the round
function.

Note that the entire ke†-generation process is not necessaril†
invertible. The ke†streamZ is calculated asX + X ( 2 0 ) and
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an irreversible addition irradd : ( x, y ) �� x + y that has two

inputs and one output.

B. Attack Procedure

Here we show the procedure for the fault injection attack

on the software implementation of Salsa20 and ChaCha. Our

proposed attack assumes that the key is fixed and an adversary

can generate the keystream any number of times in the target

implementation. The adversary does not have to select the

block number or nonce arbitrarily; however, one can repeatedly

generate a keystream with the same block counter and nonce.

For example, our proposed attack applies to a decryption

module for digital right management (DRM) in which a fixed

key is embedded in the module using tamper-proof techniques.

Step 1 Skip one of the add instructions that add words of

the initial matrix X and the matrix processed by the

round-function X (20). The value of one word in the

keystream changes if one of the add instructions is

correctly skipped; then, store the word. The step fails if

multiple values of words in the keystream change, i.e.,

if multiple instructions or some instructions in round

functions are skipped.

Step 2 Repeat Step 1 until obtaining the changed values of all

of the word in the keystream.

Step 3 Generate a matrix from the words obtained in Step 1.

The matrix is ether X or X (20). We can distinguish the

matrix by checking orthogonal words x0, x5, x10, and

x15 for Salsa20 and horizontal words x0, x1, x2 and

x3 for ChaCha. If the matrix is X then go to Step 5;

otherwise, the matrix is X (20) and go to Step 4.

The matrix is X if these words are respectively identical

� 0, � 1, � 2, and � 3 (for a 256-bit key); or � 0, � 1, � 2,

and � 3 (for a 128-bit key).

Step 4 Calculate X from X (20) using the inverse round func-

tion.

Step 5 Extract the key from the words contained in X . The key

is stored in words x1, x2, x3, x4, x11, x12, x13, x14 in

Salsa20; and x4, x5, x6, x7, x8, x9, x10, x11 in ChaCha.

V. COUNTERMEASURE

Randomization, duplication, and error detecting codes are

known as general countermeasures against instruction skip-

ping [35], [16], but these impose performance overhead on the

implementation. A software implementation of a stream cipher

is required to achieve high performance and lightweight com-

putation. Thus, we propose an algorithm-specific but extremely

lightweight countermeasure based on the variable separation

technique.

A countermeasure against this sort of attacks is to separate

variables; that is, distinct variables store the inputs and output

of the addition. Consider an addition z � x + y. The addition

returns the initial value of variable z even if the addition

is skipped. Thus, an adversary can get the value of neither

variable x nor y. Algorithm 5 shows the implementation using

countermeasure based on variable separation.

Algorithm 5 Countermeasure for fault injection attacks

Require: Key K , Counter C, and Nonce N
Ensure: Keystream Z

X � Initial Matrix ( K, C, N )
Y � X (20)

for i � 0 to 15 do
zi � x i + yi

end for
return Z

int add(int x, int y){
int z;
z = x + y;
return z;

}

Fig. 1. Variable separation at source-code level

We should note that variable separation at a source-code

level does not work in actual practice.

A. IA-32 and Intel 64 Architectures

The IA-32 and Intel 64 CPUs are mainly used in computers,

workstations, servers and supercomputer that require high

computational capability. Figure 1 show the source-code of

add function; and, Figure 2 and 3 are the assembly code for

the IA-32 and Intel 64 architectures, respectively, compiled

from the source-code. In the original source-code, the inputs

are stored in the variables x, and y and the output is stored

in the variable z; they are separated. On the other hand, the

addition z = x + y is translated to addl %edx, %eax
in the assembly code, which means that the addition result of

the values in the registers eax and edx is stored in the register

eax . The second input is stored into the eax in the assembly

code in Fig. 3 and 2; thus, the adversary can get the second

input by skipping the add instruction. Note that the IA-32 and

Intel 64 architectures support only two-operand instruction for

addition; thus, we cannot use the variable separation method

essentially. However, the IA-32 and Intel 64 architectures have

a complicated structure, and Ivy Bridge microarchitecture has

up to 19 stage instruction pipeline. Thus, it is difficult to skip

add:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl 8(%ebp), %edx
movl 12(%ebp), %eax
addl %edx, %eax
leave
ret

Fig. 2. Assembly code for IA-32 architecture
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add:

pushq %rbp

movq %rsp, %rbp

movl %edi, -20(%rbp)

movl %esi, -24(%rbp)

movl -20(%rbp), %edx

movl -24(%rbp), %eax

addl %edx, %eax

popq %rbp

ret

Fig. 3. Assembl† code for Intel 64 architectures

add:

mov r2, r0

add r0, r1, r2

bx lr

Fig. 4. Assembl† code for ARM architectures

a speci�c instruction in actual CPUs with the IA-32 and Intel
64 architectures.
B. ARM Architectures
The ARM architectures target resource-constrained devices

including those in the IoT. Thus, the ARM has simpler RISC
architecture compared to the IA-32 and Intel 64 architectures.
The ARM Cortex-M0, M3, and M4 processors have a three-
stage instruction pipeline, and the Coretex-M0+ has a two-
stage pipeline. Yuce et al. [24] proposed an instruction skip-
ping based on a glitch† clock signal for an RISC-based CPU
with a seven-stage instruction pipeline. Accordingl†, we must
protect the implementation on ARM architectures against fault
injection attacks.
The ARM architectures support three-operand instruction

such asadd r0, r1, r2 , which means that the addition
result of the values in the registersr1 and r2 is stored in
the registerr0 . Figure 4 shows the assembl† code where
the countermeasure is used. Note that a compiler ma† output
code includingadd r0, r1 or add r0, r0, r1 for
input codez = x + y where input and output variables are
sepereated. We thus need to use assembl† or inline-assembl†
implementation to use the three-operand instruction explicitl†.
Figure 5 shows the implementation of secure addition based
on the variable separation countermeasure using GCC inline
assembl†.
C. Execution Time Overhead
We evaluate the execution overhead of our countermea-

sure using actual implementation of ChaCha. Google pro-
vides BoringSSL [36] that is a lightweight version of
OpenSSL [37], and it contains the implementation of ChaCha.
The chacha_core in chacha.c is the main function of
ChaCha, which takes the initial matrix as an input and outputs
the ke†stream. The assembl† code of thechacha_core has

int add(int x, int y){

int z;

asm volatile(

"add %[s], %[t], %[u];"

: [s] "=r" (z)

: [t] "r" (x), [u] "r" (y)

:

);

return z;

}

Fig. 5. Implementation of Addition using GCC Inline Assembl†

TABLE I
E XECUTION TIME OVERHEAD OF COUNTERMEASURES

Countermeasure Num. of Instructions Overhead [%]
Dual Modular Redundant 64 1.92

Triple Modular Redundunt 224 6.73
Parit† 320 9.62

Parit†-Barrel 208 6.25
Variable Separation (Proposed) 16 0.48

3,327 instructions as inlining the loops in the code. We use
a cross-compilerarm-linux-gnueabihf-gcc on Ubuntu
16.10 with an Intel 64 CPU and an option-S to obtain the
assembl† code. The assembl† code contains an instruction
add r2, r2, r3 to add a word of the initial matrixX
and that of the matrixX (20). We replace the instruction with
the instructions

add r4, r2, r3

mov r2, r4

to sperate the input and output variables. The program executes
the additionalmov instruction 16-times. We can evaluate the
execution time overhead of our countermeasure is 16/3,327
= 0.0048 and less than 0.5% assuming that ever† instruction
completes in one clock c†cle. Note that the real overhead is
even smaller than 0.5% since the some instructions including
ldr and str require more than one clock c†cles to complete
whilemov completes in one clock c†cle.
Table I compares the number of additional instruction and

execution time overheads of the existing [35] and our proposed
countermeasures, assuming that these countermeasures appl†
to the 16add instructions. Our countermeasure can achieve
the least execution time overhead.

VI. CONCLUSION
We have proposed a fault injection attack against software

implementation of Salsa20 and ChaCha. The attack can extract
the ke† from the initial matrix of Salsa20 or ChaCha b†
skipping anadd instruction. We also proposed a lightweight
countermeasure with less than 0.5% execution time overhead
based on the variable separation technique that makes distinct
variables store the inputs and output of the addition step. The
IA-32 and Intel 64 architectures support onl† two-operand
add instructions, and the variable separation countermeasure
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is not available in the actual software. However, these architec-

tures have a multi-stage instruction pipeline with more than ten

stages. Thus, our proposed attack is hard to apply to Salsa20

or ChaCha. On the other hand, the ARM architectures have

an instruction pipeline with fewer stages, and some published

studies report that the instruction skipping is possible. Three-

operand instruction is available in the ARM architectures, and

we can use a variable separation countermeasure.

Our future research will explore the possibility of a fault

injection attack that targets the generation and assignment of

the initial matrix X and the matrix X ( 2 0 ) , and attack in which

an adversary can arbitrarily select the block counter and nonce.
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Abstract„We propose a fault injection attack on Salsa20 and
ChaCha stream ciphers. In these stream ciphers, the initial
matrix X , which consists of constants, a key, a block counter,
and a nonce, is added to the matrix X (20) process with a round
function to generate a keystream. Our proposed fault injection
attack skips the corresponding addition ( add ) instruction to
obtain the matrix X or X (20) and extracts the key. General
countermeasures against instruction skipping, including random-
ization, duplication, and parity checking, are not suitable for the
software implementation of a stream cipher that requires high
performance and lightweight computation. We thus demonstrate
an algorithm-speci“c but extremely lightweight countermeasure
with less than 0.5% execution time overhead based on a variable
separation technique. Furthermore, we study the feasibility of the
countermeasure in the IA-32, Intel 64, and ARM architectures.

I. INTRODUCTION

Salsa20 [1] and ChaCha [2], [3] are stream ciphers designed

by Bernstein. These stream ciphers have the following fea-

tures: 1) the round function contains only addition, exclusive-

or, and fixed-distance rotations, 2) random access to a cipher-

text is possible by specifying an appropriate block number and

generating a 512-bit keystream.

Salsa20 is selected as a Profile I (for software implemen-

tation) in the eStream project, which is a standardization

project for stream ciphers in European countries. Nir and

Langley designed a sign-encryption ChaCha20-Poly1305[3]

by combining Poly1305 [4] as designed by Bernstein and

ChaCha with 20 rounds. ChaCha20-Poly1305 is used in

Google services and has been adopted by OpenSSH. TLS 1.3

is going to support ChaCha20-Poly1305.

This paper proposes a fault injection attack against software

implementation of stream ciphers Salsa20 and ChaCha. We

show a procedure to extract the key that skips the add

instruction in the key generation process and countermeasures

based on a variable separation technique. Furthermore, we

demonstrate an algorithm-specific but extremely lightweight

countermeasure with less than 0.5% execution time over-

head based on a variable separation technique. A software

implementation of a stream cipher is required to achieve

high performance and lightweight computation; and general

countermeasures against instruction skipping including ran-

domization, duplication (dual/triple modular redundant), and

parity checking may not be applicable. Then, we study the

feasibility of a variable separation countermeasure in the IA-

32 and Intel 64 and ARM architectures.

II. RELATED WORK

Boneh et al. [5] proposed a theoretical model to break

cryptographic schemes by taking advantage of random hard-

ware faults. They demonstrated that their attack applies to

implementations of RSA and Rabin signatures. Biham and

Shamir [6] showed that secret key cryptosystems are vulnera-

ble to a fault injection attack. They proposed a different fault

model, one that can break DES by analyzing a small number

of ciphertexts. Blömer and Seifert [7] applied an optical fault

injection attack [8] and an implementation-dependent attack

including timing attack [9] to AES. Piret and Quisquater [10]

proposed a differential fault injection attack against SPN struc-

tures applicable to AES and KHAZAD. Chen and Yen [11]

proposed a differential fault attack on the AES key schedule.

Tunstall et al. [12] proposed a differential fault injection attack

on AES based on a single fault. Roche et al. [13] proposed

a combined differential fault injection and side-channel attack

on AES.

Fouque et al. [14] shows that fault injection attack can

be used to execute arbitrary code. A fault injection attack

based on instruction skipping used on the square and multiply

operation was proposed by Schmidt and Herbst [15]. Barenghi

et al. [16] proposed an attack using instructions against AES

and RSA. Bar-El et al. [17] and Trichina and Korkiyan [18]

demonstrated that instruction skipping can be brought about

a laser pulse. Dehbaoui et al. [19] and Morno et al. [20]

showed that instruction skipping can be brought about using an

electromagnetic pulse. Instruction skipping based on a glitchy

clock signal was proposed by Balasch et al. [21], Korak and

Hoefler [22], Endo et al. [23], and Yuce et al [24].

The first fault injection attacks against stream ciphers were

introduced by Hoch and Shamir [25], which described attacks

against LILI-128 and SOBER-t32 and RC4. Other stream

ciphers including SNOW 3G [26], Trivium [27], HC-128 [28],

Rabbit [29], [30], Sosemanuk [31], Mugi [32] and MICKEY

2.0 [33], [34] have been analyzed using fault injection attack.

III. ALGORITHM DESCRIPTION: SALSA20 AND CHACHA

We describe here the algorithms of Salsa20 and ChaCha.

ChaCha is a variant of Salsa20, and we show how it the differs
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from Salsa20.

A. Salsa20

The stream cipher Salsa20 operates on 32-bit words, takes as

input a 256-bit key K = (k0, k1, k2, k3, k4, k5, k6, k7) or 128-

bit key K = (k0, k1, k2, k3) and a 64-bit nonce N = (n0, n1),
and produces a sequence of 512-bit keystream blocks. The C-

th block is the output of the Salsa20 function that takes as input

the key, the nonce, and a 64-bit block counter C = (c0, c1)
corresponding to the integer i. This function acts on the 4× 4
matrix of 32-bit words written as;

X =

⎛
⎜⎜⎝

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
σ0 k0 k1 k2
k3 σ1 n0 n1

c0 c1 σ2 k0
k1 k2 k3 σ3

⎞
⎟⎟⎠ (for a 256-bit key)

or

⎛
⎜⎜⎝
τ0 k0 k1 k2
k3 τ1 n0 n1

c0 c1 τ2 k4
k5 k6 k7 τ3

⎞
⎟⎟⎠ (for a 128-bit key)

dependent on the key length, where σ and τ are constants

such that σ0 = 0x61707865, σ1 = 0x3320646E, σ2 =
0x79622D32, σ3 = 0x6B206574, τ0 = 0x61707865, τ1 =
0x3120646E, τ2 = 0x79622D36, and τ3 = 0x6B206574.

The keystream block Z is defined as; Z = X+X(20), where

X(r) = Roundr(X) is the round function of Salsa20 and +

is word-wise addition modulo 232. If Z = X + X(r), it is

called “r-round Salsa20” or “Salsa20/r”. The round function

consists of the following nonlinear functions that are called

quarter-round functions. A vector (a, b, c, d) of four words is

transformed as;

b← b⊕ ((a+ d) ≪ 7)

c← c⊕ ((b+ a) ≪ 9)

d← d⊕ ((c+ b) ≪ 13)

a← a⊕ ((d+ c) ≪ 18).

The quarter-round functions are applied to columns

(x0, x4, x8, x12), (x5, x9, x13, x1), (x10, x14, x2, x6) and

(x15, x3, x7, x11) in odd rounds, and rows (x0, x1, x2, x3),
(x5, x6, x7, x4), (x10, x11, x8, x9) and (x15, x12, x13, x14) in

even rounds. Algorithm 1 describes the complete procedure

of Salsa20.

B. ChaCha

ChaCha is similar to Salsa20 except for the following three

modifications;

Algorithm 1 Salsa20

Require: Key K, Block Counter C and Nonce N
Ensure: Keystream Z

X ← InitialMatrix(K,C,N)
Y ← X
for i = 0 upto 9 do
/* Column Round */
(x0, x4, x8, x12)← QuarterRound(x0, x4, x8, x12)
(x5, x9, x13, x1)← QuarterRound(x5, x9, x13, x1)
(x10, x14, x2, x6)← QuarterRound(x10, x14, x2, x6)
(x15, x3, x7, x11)← QuarterRound(x15, x3, x7, x11)
/* Row Round */
(x0, x1, x2, x3)← QuarterRound(x0, x1, x2, x3)
(x5, x6, x7, x4)← QuarterRound(x5, x6, x7, x4)
(x10, x11, x8, x9)← QuarterRound(x10, x11, x8, x9)
(x15, x12, x13, x14)← QuarterRound(x15, x12, x13, x14)

end for
Z ← X + Y
return Z

1) The composition of the four quarter-round functions are

defined as below;

a← a+ b

d← d⊕ a

d← d ≪ 16

c← c+ d

b← b⊕ c

b← b ≪ 12

a← a+ b

d← d⊕ a

d← d ≪ 8

c← c+ d

b← b⊕ c

b← b ≪ 7.

2) The composition of the initial matrix defined as below1;

X =

⎛
⎜⎜⎝
σ0 σ1 σ2 σ3

k0 k1 k2 k3
k0 k1 k2 k3
n0 n1 c0 c1

⎞
⎟⎟⎠ (for a 256-bit key)

or

⎛
⎜⎜⎝
τ0 τ1 τ2 τ3
k0 k1 k2 k3
k4 k5 k6 k7
v0 v1 i0 i1

⎞
⎟⎟⎠ (for a 128-bit key).

3) The quarter-round functions are applied to the columns

(x0, x4, x8, x12), (x5, x9, x13, x1), (x10, x14, x2, x6)
and (x15, x3, x7, x11) in odd rounds, and diagonals

1The IETF version [3] of ChaCha takes a 32-bit block counter C = (c0)
and 96-bit nonce N = (n0, n1, n2), and x12 = c0, x13 = n0, x14 = n1,
x15 = n2. Furthermore, a 128-bit key is out of scope in the IETF version.
However, this difference does not affect our proposed attack.
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Algorithm 2 ChaCha
Require: Key K, Block Counter C, and Nonce N
Ensure: Keystream Z

X � InitialMatrix(K,C,N)
Y � X
for i � 0 to 9 do

/* Column Round */
(x  , x 4 , x 8 , x  2 ) � QuarterRound (x , x 4 , x 8 , x  2 )
(x  , x 5 , x 9 , x  3 ) � QuarterRound (x , x 5 , x 9 , x  3 )
(x 2 , x 6 , x   , x  4 ) � QuarterRound (x2 , x 6 , x   , x  4 )
(x3 , x 7 , x   , x  5 ) � QuarterRound (x3 , x 7 , x   , x  5 )
/* Diagonal Round */
(x , x 5 , x   , x  5 ) � QuarterRound (x , x 5 , x   , x  5 )
(x , x 6 , x   , x  2 ) � QuarterRound (x , x 6 , x   , x  2 )
(x2 , x 7 , x 8 , x  3 ) � QuarterRound (x2 , x 7 , x 8 , x  3 )
(x 3 , x 4 , x 9 , x  4 ) � QuarterRound (x3 , x 4 , x 9 , x  4 )

end for

Z � X + Y
return Z

Algorithm 3 Implementation 1 of ChaCha
Require: Key K, Counter C, and Nonce N
Ensure: Keystream Z

X � Initial Matrix(K,C,N)
Z � X
X � X ( 2  )
for i � 0 to 15 do

zi � zi + xi
end for

return Z

(x  , x 5 , x   , x  5 ), (x  , x 6 , x   , x  2 ), (x 2 , x 7 , x 8 , x  3 )
and (x 3 , x 4 , x 9 , x  4 ) in even rounds.

Algorithm 2 describes the complete procedure of ChaCha.

IV. P ROPOSED ATTACK

The key streams of Salsa20 and ChaCha are calculated
as the summation of the initial matrix X and the matrix
X ( 2  ) processed by the round function. Our proposed fault
injection attack makes Salsa20 and ChaCha output the words
of the matrix X or X ( 2  ) depending on their implementations.
Algorithm 3 and 4 shows the implementations of Salsa20
and ChaCha. An adversary can obtain the elements of the
initial matrix X or the matrix X ( 2  ) processed by the round
function by skipping the add instruction of the “rst or second
implementation, respectively. The adversary can extract the
key from both X and X ( 2  ) since the round functions of
Salsa20 and ChaCha are invertible.

A. Invertibility of Round Function

The quarter-round functions of Salsa20 and ChaCha contain
only additions, exclusive-or, and constant-distance rotations.

Algorithm 4 Implementation 2 of ChaCha
Require: Key K, Counter C, and Nonce N
Ensure: Keystream Z

X � Initial Matrix(K,C,N)
Z � X ( 2  )
for i � 0 to 15 do

zi � zi + xi
end for

return Z

These basic operations can be described as follows;

a d d : ( x, y) �� (x + y, y),

x ≫ r : ( x, y) �� (x � y, y),

r≫tl (n) : x �� x � n,

and they are invertible;

a d d Š  = s u b : ( x, y) �� (x Š y, y),

x ≫ r Š  = x ≫ r : ( x, y) �� (x � y, y),

r≫tl (n)Š  = r≫tr (n) : x �� x � n.

The quarter-round functions of Salsa20 and ChaCha are thus
invertible. The inverse quarter-round function of Salsa20 is
given as;

a � a � ((c + d) � 18)

d � d � ((b + c) � 13)

c � c � ((a + b) � 9)

b � b � ((a + d) � 7),

and that of ChaCha is given as;

b � b � 7

b � b � c

c � c Š d

d � d � 8

d � d � a

a � a Š b

b � b � 12

b � b � c

c � c Š d

d � d � 16

d � d � a

a � a Š b.

The round function of ChaCha consists of four quarter-round
functions and distinct 4-tuples of words are processed with
the quarter-round functions. Thus, the round function is also
invertible. There is no entropy loss in the process of the round
function.

Note that the entire key-generation process is not necessarily
invertible. The keystream Z is calculated as X + X ( 2  ) and
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an irreversible addition irradd . (x, y ) �� x + y that has two

inputs and one output.

B. Attack Procedure
Here we show the procedure for the fault injection attack

on the software implementation of Salsa20 and ChaCha. Our

proposed attack assumes that the key is fixed and an adversary

can generate the keystream any number of times in the target

implementation. The adversary does not have to select the

block number or nonce arbitrarily; however, one can repeatedly

generate a keystream with the same block counter and nonce.

For example, our proposed attack applies to a decryption

module for digital right management (DRM) in which a fixed

key is embedded in the module using tamper-proof techniques.

Step 1 Skip one of the add instructions that add words of

the initial matrix X and the matrix processed by the

round-function X (20) . The value of one word in the

keystream changes if one of the add instructions is

correctly skipped; then, store the word. The step fails if

multiple values of words in the keystream change, i.e.,

if multiple instructions or some instructions in round

functions are skipped.

Step 2 Repeat Step 1 until obtaining the changed values of all

of the word in the keystream.

Step 3 Generate a matrix from the words obtained in Step 1.

The matrix is ether X or X (20) . We can distinguish the

matrix by checking orthogonal words x 0 , x 5 , x 10 , and

x 15 for Salsa20 and horizontal words x 0 , x 1 , x 2 and

x 3 for ChaCha. If the matrix is X then go to Step 5;

otherwise, the matrix is X (20) and go to Step 4.

The matrix is X if these words are respectively identical

� 0 , � 1 , � 2 , and � 3 (for a 256-bit key); or � 0 , � 1 , � 2 ,

and � 3 (for a 128-bit key).

Step 4 Calculate X from X (20) using the inverse round func-

tion.

Step 5 Extract the key from the words contained in X . The key

is stored in words x 1 , x 2 , x 3 , x 4 , x 11 , x 12 , x 13 , x 14 in

Salsa20; and x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 , x 11 in ChaCha.

V. COUNTERMEASURE

Randomization, duplication, and error detecting codes are

known as general countermeasures against instruction skip-

ping [35], [16], but these impose performance overhead on the

implementation. A software implementation of a stream cipher

is required to achieve high performance and lightweight com-

putation. Thus, we propose an algorithm-specific but extremely

lightweight countermeasure based on the variable separation

technique.

A countermeasure against this sort of attacks is to separate

variables; that is, distinct variables store the inputs and output

of the addition. Consider an addition z � x + y . The addition

returns the initial value of variable z even if the addition

is skipped. Thus, an adversary can get the value of neither

variable x nor y . Algorithm 5 shows the implementation using

countermeasure based on variable separation.

Algorithm 5 Countermeasure for fault injection attacks

Require: Key K , Counter C , and Nonce N
Ensure: Keystream Z
X � Initial Matrix(K, C, N )
Y � X (20)

for i � 0 to 15 do
z i � x i + y i

end for
return Z

int add(int x, int y){
int z;
z = x + y;
return z;

}

Fig. 1. Variable separation at source-code level

We should note that variable separation at a source-code

level does not work in actual practice.

A. IA-32 and Intel 64 Architectures
The IA-32 and Intel 64 CPUs are mainly used in computers,

workstations, servers and supercomputer that require high

computational capability. Figure 1 show the source-code of

add function; and, Figure 2 and 3 are the assembly code for

the IA-32 and Intel 64 architectures, respectively, compiled

from the source-code. In the original source-code, the inputs

are stored in the variables x , and y and the output is stored

in the variable z ; they are separated. On the other hand, the

addition z = x + y is translated to addl %edx, %eax
in the assembly code, which means that the addition result of

the values in the registers eax and edx is stored in the register

eax . The second input is stored into the eax in the assembly

code in Fig. 3 and 2; thus, the adversary can get the second

input by skipping the add instruction. Note that the IA-32 and

Intel 64 architectures support only two-operand instruction for

addition; thus, we cannot use the variable separation method

essentially. However, the IA-32 and Intel 64 architectures have

a complicated structure, and Ivy Bridge microarchitecture has

up to 19 stage instruction pipeline. Thus, it is difficult to skip

add:
pushl %ebp
movl %esp, %ebp
subl $6, %esp
movl 8(%ebp), %edx
movl 2(%ebp), %eax
addl %edx, %eax
leave
ret

Fig. 2. Assembly code for IA-32 architecture
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add:

pushq %rbp

movq %rsp, %rbp

movl %edi, -20(%rbp)

movl %esi, -24(%rbp)

movl -20(%rbp), %edx

movl -24(%rbp), %eax

addl %edx, %eax

popq %rbp

ret

Fig. 3. Assembly code for Intel 64 architectures

add:

mov r2, r0

add r0, r1, r2

bx lr

Fig. 4. Assembly code for ARM architectures

a speci“c instruction in actual CPUs with the IA-32 and Intel
64 architectures.

B. ARM Architectures

The ARM architectures target resource-constrained devices
including those in the IoT. Thus, the ARM has simpler RISC
architecture compared to the IA-32 and Intel 64 architectures.
The ARM Cortex-M0, M3, and M4 processors have a three-
stage instruction pipeline, and the Coretex-M0+ has a two-
stage pipeline. Yuce et al. [24] proposed an instruction skip-
ping based on a glitchy clock signal for an RISC-based CPU
with a seven-stage instruction pipeline. Accordingly, we must
protect the implementation on ARM architectures against fault
injection attacks.

The ARM architectures support three-operand instruction
such as add r0, r1, r2 , which means that the addition
result of the values in the registers r1 and r2 is stored in
the register r0 . Figure 4 shows the assembly code where
the countermeasure is used. Note that a compiler may output
code including add r0, r1 or add r0, r0, r1 for
input code z = x + y where input and output variables are
sepereated. We thus need to use assembly or inline-assembly
implementation to use the three-operand instruction explicitly.
Figure 5 shows the implementation of secure addition based
on the variable separation countermeasure using GCC inline
assembly.

C. Execution Time Overhead

We evaluate the execution overhead of our countermea-
sure using actual implementation of ChaCha. Google pro-
vides BoringSSL [36] that is a lightweight version of
OpenSSL [37], and it contains the implementation of ChaCha.
The chacha_core in chacha.c is the main function of
ChaCha, which takes the initial matrix as an input and outputs
the keystream. The assembly code of the chacha_core has

int add(int x, int y){

int z;

asm volatile(

"add %[s], %[t], %[u];"

: [s] "=r" (z)

: [t] "r" (x), [u] "r" (y)

:

);

return z;

}

Fig. 5. Implementation of Addition using GCC Inline Assembly

TABLE I
EXECUTION TIME OVERHEAD OF COUNTERMEASURES

Countermeasure Num. of Instructions Overhead [%]
Dual Modular Redundant 64 1.92

Triple Modular Redundunt 224 6.73
Parity 320 9.62

Parity-Barrel 208 6.25
Variable Separation (Proposed) 16 0.48

3,327 instructions as inlining the loops in the code. We use
a cross-compiler arm-linux-gnueabihf-gcc on Ubuntu
16.10 with an Intel 64 CPU and an option -S to obtain the
assembly code. The assembly code contains an instruction
add r2, r2, r3 to add a word of the initial matrix X
and that of the matrix X (20). We replace the instruction with
the instructions

add r4, r2, r3

mov r2, r4

to sperate the input and output variables. The program executes
the additional mov instruction 16-times. We can evaluate the
execution time overhead of our countermeasure is 16/3,327
= 0.0048 and less than 0.5% assuming that every instruction
completes in one clock cycle. Note that the real overhead is
even smaller than 0.5% since the some instructions including
ldr and str require more than one clock cycles to complete
while mov completes in one clock cycle.

Table I compares the number of additional instruction and
execution time overheads of the existing [35] and our proposed
countermeasures, assuming that these countermeasures apply
to the 16 add instructions. Our countermeasure can achieve
the least execution time overhead.

VI. C ONCLUSION

We have proposed a fault injection attack against software
implementation of Salsa20 and ChaCha. The attack can extract
the key from the initial matrix of Salsa20 or ChaCha by
skipping an add instruction. We also proposed a lightweight
countermeasure with less than 0.5% execution time overhead
based on the variable separation technique that makes distinct
variables store the inputs and output of the addition step. The
IA-32 and Intel 64 architectures support only two-operand
add instructions, and the variable separation countermeasure
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is not available in the actual software. However, these architec-

tures have a multi-stage instruction pipeline with more than ten

stages. Thus, our proposed attack is hard to apply to Salsa20

or ChaCha. On the other hand, the ARM architectures have

an instruction pipeline with fewer stages, and some published

studies report that the instruction skipping is possible. Three-

operand instruction is available in the ARM architectures, and

we can use a variable separation countermeasure.

Our future research will explore the possibility of a fault

injection attack that targets the generation and assignment of

the initial matrix X and the matrix X (20), and attack in which

an adversary can arbitrarily select the block counter and nonce.
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Abstract�We propose a fault injection attack on Salsa20 and
ChaCha stream ciphers. In these stream ciphers, the initial
matrix X , which consists of constants, a key, a block counter,
and a nonce, is added to the matrixX (20) process with a round
function to generate a keystream. Our proposed fault injection
attack skips the corresponding addition (add ) instruction to
obtain the matrixX or X (20) and extracts the key. General
countermeasures against instruction skipping, including random-
ization, duplication, and parity checking, are not suitable for the
software implementation of a stream cipher that requires high
performance and lightweight computation. We thus demonstrate
an algorithm-speci�c but extremely lightweight countermeasure
with less than 0.5% execution time overhead based on a variable
separation technique. Furthermore, we study the feasibility of the
countermeasure in the IA-32, Intel 64, and ARM architectures.

I. INTRODUCTION

Salsa20 [1] and ChaCha [2], [3] are stream ciphers designed
by Bernstein. These stream ciphers have the following fea-
tures: 1) the round function contains only addition, exclusive-
or, and fixed-distance rotations, 2) random access to a cipher-
text is possible by specifying an appropriate block number and
generating a 512-bit keystream.

Salsa20 is selected as a Profile I (for software implemen-
tation) in the eStream project, which is a standardization
project for stream ciphers in European countries. Nir and
Langley designed a sign-encryption ChaCha20-Poly1305[3]
by combining Poly1305 [4] as designed by Bernstein and
ChaCha with 20 rounds. ChaCha20-Poly1305 is used in
Google services and has been adopted by OpenSSH. TLS 1.3
is going to support ChaCha20-Poly1305.

This paper proposes a fault injection attack against software
implementation of stream ciphers Salsa20 and ChaCha. We
show a procedure to extract the key that skips theadd
instruction in the key generation process and countermeasures
based on a variable separation technique. Furthermore, we
demonstrate an algorithm-specific but extremely lightweight
countermeasure with less than 0.5% execution time over-
head based on a variable separation technique. A software
implementation of a stream cipher is required to achieve
high performance and lightweight computation; and general
countermeasures against instruction skipping including ran-
domization, duplication (dual/triple modular redundant), and
parity checking may not be applicable. Then, we study the

feasibility of a variable separation countermeasure in the IA-
32 and Intel 64 and ARM architectures.

II. RELATED WORK

Boneh et al. [5] proposed a theoretical model to break
cryptographic schemes by taking advantage of random hard-
ware faults. They demonstrated that their attack applies to
implementations of RSA and Rabin signatures. Biham and
Shamir [6] showed that secret key cryptosystems are vulnera-
ble to a fault injection attack. They proposed a different fault
model, one that can break DES by analyzing a small number
of ciphertexts. Bl ¤omer and Seifert [7] applied an optical fault
injection attack [8] and an implementation-dependent attack
including timing attack [9] to AES. Piret and Quisquater [10]
proposed a differential fault injection attack against SPN struc-
tures applicable to AES and KHAZAD. Chen and Yen [11]
proposed a differential fault attack on the AES key schedule.
Tunstall et al. [12] proposed a differential fault injection attack
on AES based on a single fault. Roche et al. [13] proposed
a combined differential fault injection and side-channel attack
on AES.

Fouque et al. [14] shows that fault injection attack can
be used to execute arbitrary code. A fault injection attack
based on instruction skipping used on the square and multiply
operation was proposed by Schmidt and Herbst [15]. Barenghi
et al. [16] proposed an attack using instructions against AES
and RSA. Bar-El et al. [17] and Trichina and Korkiyan [18]
demonstrated that instruction skipping can be brought about
a laser pulse. Dehbaoui et al. [19] and Morno et al. [20]
showed that instruction skipping can be brought about using an
electromagnetic pulse. Instruction skipping based on a glitchy
clock signal was proposed by Balasch et al. [21], Korak and
Hoe”er [22], Endo et al. [23], and Yuce et al [24].

The first fault injection attacks against stream ciphers were
introduced by Hoch and Shamir [25], which described attacks
against LILI-128 and SOBER-t32 and RC4. Other stream
ciphers including SNOW 3G [26], Trivium [27], HC-128 [28],
Rabbit [29], [30], Sosemanuk [31], Mugi [32] and MICKEY
2.0 [33], [34] have been analyzed using fault injection attack.

III. ALGORITHM D ESCRIPTION : SALSA 20 AND CHA CHA

We describe here the algorithms of Salsa20 and ChaCha.
ChaCha is a variant of Salsa20, and we show how it the differs
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from Salsa20.

A. Salsa20

The stream cipher Salsa20 operates on 32-bit words, takes as
input a 256-bit keyK = ( k0 , k1 , k2 , k3 , k4 , k5 , k6 , k7) or 128-
bit keyK = ( k0 , k1 , k2 , k3) and a 64-bit nonceN = (n0 , n1),
and produces a sequence of 512-bit keystream blocks. TheC-
th block is the output of the Salsa20 function that takes as input
the key, the nonce, and a 64-bit block counterC = ( c0 , c1)
corresponding to the integeri. This function acts on the4 × 4
matrix of 32-bit words written as;

X =

�

�
�
�

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

�

�
�
�

=

�

�
�
�

σ0 k0 k1 k2
k3 σ1 n0 n1

c0 c1 σ2 k0
k1 k2 k3 σ3

�

�
�
� (for a 256-bit key)

or

�

�
�
�

τ0 k0 k1 k2
k3 τ1 n0 n1

c0 c1 τ2 k4
k5 k6 k7 τ3

�

�
�
� (for a 128-bit key)

dependent on the key length, whereσ and τ are constants
such that σ0 = 0x61707865 , σ1 = 0x3320646E , σ2 =
0x79622D32 , σ3 = 0x6B206574 , τ0 = 0x61707865 , τ1 =
0x3120646E , τ2 = 0x79622D36 , and τ3 = 0x6B206574 .

The keystream blockZ is defined as;Z = X+ X(20) , where
X(r ) = Roundr (X) is the round function of Salsa20 and +
is word-wise addition modulo232 . If Z = X + X(r ) , it is
called •r-round Salsa20Ž or •Salsa20/rŽ. The round function
consists of the following nonlinear functions that are called
quarter-round functions. A vector(a, b, c, d) of four words is
transformed as;

b � b � ((a + d) � 7)
c � c � ((b + a) � 9)
d � d � ((c + b) � 13)
a � a � ((d + c) � 18).

The quarter-round functions are applied to columns
(x0 , x4 , x8 , x12), (x5 , x9 , x13 , x1), (x10 , x14 , x2 , x6) and
(x15 , x3 , x7 , x11) in odd rounds, and rows(x0 , x1 , x2 , x3),
(x5 , x6 , x7 , x4), (x10 , x11 , x8 , x9) and (x15 , x12 , x13 , x14) in
even rounds. Algorithm 1 describes the complete procedure
of Salsa20.

B. ChaCha

ChaCha is similar to Salsa20 except for the following three
modifications;

Alg≫rithm 1 Salsa20
Require: Key K, Block Counter C and Nonce N
E≪sure: Keystream Z

X � InitialMatrix(K,C,N)
Y � X
f≫r i = 0 upto 9 d≫
/ * Column Round * /
(x0 , x4 , x8 , x12) � QuarterRound(x0 , x4 , x8 , x12)
(x5 , x9 , x13 , x1) � QuarterRound(x5 , x9 , x13 , x1)
(x10 , x14 , x2 , x6) � QuarterRound(x10 , x14 , x2 , x6)
(x15 , x3 , x7 , x11) � QuarterRound(x15 , x3 , x7 , x11)
/ * Row Round * /
(x0 , x1 , x2 , x3) � QuarterRound(x0 , x1 , x2 , x3)
(x5 , x6 , x7 , x4) � QuarterRound(x5 , x6 , x7 , x4)
(x10 , x11 , x8 , x9) � QuarterRound(x10 , x11 , x8 , x9)
(x15 , x12 , x13 , x14) � QuarterRound(x15 , x12 , x13 , x14)

e≪d f≫r
Z � X + Y
retur≪ Z

1) The composition of the four quarter-round functions are
defined as below;

a � a + b

d � d � a

d � d � 16
c � c + d

b � b � c

b � b � 12
a � a + b

d � d � a

d � d � 8
c � c + d

b � b � c

b � b � 7.
2) The composition of the initial matrix defined as below1;

X =

�

�
�
�

σ0 σ1 σ2 σ3

k0 k1 k2 k3
k0 k1 k2 k3
n0 n1 c0 c1

�

�
�
� (for a 256-bit key)

or

�

�
�
�

τ0 τ1 τ2 τ3
k0 k1 k2 k3
k4 k5 k6 k7
v0 v1 i0 i1

�

�
�
� (for a 128-bit key).

3) The quarter-round functions are applied to the columns
(x0 , x4 , x8 , x12), (x5 , x9 , x13 , x1), (x10 , x14 , x2 , x6)
and (x15 , x3 , x7 , x11) in odd rounds, and diagonals

1The IETF version [3] of ChaCha takes a 32-bit block counterC = ( c0)
and 96-bit nonce N = ( n0, n1, n2) , and x12 = c0 , x13 = n0 , x14 = n1 ,
x15 = n2 . Furthermore, a 128-bit key is out of scope in the IETF version.
However, this difference does not affect our proposed attack.
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Algorithm 2 ChaCha

Require: Key K, Block Counter C, and Nonce N
Ensure: Keystream Z

X ← InitialMatrix(K,C,N)
Y ← X
for i← 0 to 9 do
/* Column Round */
(x0, x4, x8, x12)← QuarterRound(x0, x4, x8, x12)
(x1, x5, x9, x13)← QuarterRound(x1, x5, x9, x13)
(x2, x6, x10, x14)← QuarterRound(x2, x6, x10, x14)
(x3, x7, x11, x15)← QuarterRound(x3, x7, x11, x15)
/* Diagonal Round */
(x0, x5, x10, x15)← QuarterRound(x0, x5, x10, x15)
(x1, x6, x11, x12)← QuarterRound(x1, x6, x11, x12)
(x2, x7, x8, x13)← QuarterRound(x2, x7, x8, x13)
(x3, x4, x9, x14)← QuarterRound(x3, x4, x9, x14)

end for
Z ← X + Y
return Z

Algorithm 3 Implementation 1 of ChaCha

Require: Key K, Counter C, and Nonce N
Ensure: Keystream Z

X ← Initial Matrix(K,C,N)
Z ← X
X ← X(20)

for i← 0 to 15 do
zi ← zi + xi

end for
return Z

(x0, x5, x10, x15), (x1, x6, x11, x12), (x2, x7, x8, x13)
and (x3, x4, x9, x14) in even rounds.

Algorithm 2 describes the complete procedure of ChaCha.

IV. PROPOSED ATTACK

The key streams of Salsa20 and ChaCha are calculated

as the summation of the initial matrix X and the matrix

X(20) processed by the round function. Our proposed fault

injection attack makes Salsa20 and ChaCha output the words

of the matrix X or X(20) depending on their implementations.

Algorithm 3 and 4 shows the implementations of Salsa20

and ChaCha. An adversary can obtain the elements of the

initial matrix X or the matrix X(20) processed by the round

function by skipping the add instruction of the first or second

implementation, respectively. The adversary can extract the

key from both X and X(20) since the round functions of

Salsa20 and ChaCha are invertible.

A. Invertibility of Round Function

The quarter-round functions of Salsa20 and ChaCha contain

only additions, exclusive-or, and constant-distance rotations.

Algorithm 4 Implementation 2 of ChaCha

Require: Key K, Counter C, and Nonce N
Ensure: Keystream Z

X ← Initial Matrix(K,C,N)
Z ← X(20)

for i← 0 to 15 do
zi ← zi + xi

end for
return Z

These basic operations can be described as follows;

add : (x, y) �→ (x+ y, y),

xor : (x, y) �→ (x⊕ y, y),

rotl(n) : x �→ x ≪ n,

and they are invertible;

add−1 = sub : (x, y) �→ (x− y, y),

xor−1 = xor : (x, y) �→ (x⊕ y, y),

rotl(n)−1 = rotr(n) : x �→ x ≫ n.

The quarter-round functions of Salsa20 and ChaCha are thus

invertible. The inverse quarter-round function of Salsa20 is

given as;

a← a⊕ ((c+ d) ≪ 18)

d← d⊕ ((b+ c) ≪ 13)

c← c⊕ ((a+ b) ≪ 9)

b← b⊕ ((a+ d) ≪ 7),

and that of ChaCha is given as;

b← b ≫ 7

b← b⊕ c

c← c− d

d← d ≫ 8

d← d⊕ a

a← a− b

b← b ≫ 12

b← b⊕ c

c← c− d

d← d ≫ 16

d← d⊕ a

a← a− b.

The round function of ChaCha consists of four quarter-round

functions and distinct 4-tuples of words are processed with

the quarter-round functions. Thus, the round function is also

invertible. There is no entropy loss in the process of the round

function.

Note that the entire key-generation process is not necessarily

invertible. The keystream Z is calculated as X + X(20) and
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an irreversible additionirradd . (x, y) �� x + y that has two
inputs and one output.

B. Attack Procedure

Here we show the procedure for the fault injection attack
on the software implementation of Salsa20 and ChaCha. Our
proposed attack assumes that the key is fixed and an adversary
can generate the keystream any number of times in the target
implementation. The adversary does not have to select the
block number or nonce arbitrarily; however, one can repeatedly
generate a keystream with the same block counter and nonce.
For example, our proposed attack applies to a decryption
module for digital right management (DRM) in which a fixed
key is embedded in the module using tamper-proof techniques.

Step 1 Skip one of the add instructions that add words of
the initial matrixX and the matrix processed by the
round-functionX ( 2 0 ) . The value of one word in the
keystream changes if one of theadd instructions is
correctly skipped; then, store the word. The step fails if
multiple values of words in the keystream change, i.e.,
if multiple instructions or some instructions in round
functions are skipped.

Step 2 Repeat Step 1 until obtaining the changed values of all
of the word in the keystream.

Step 3 Generate a matrix from the words obtained in Step 1.
The matrix is etherX or X ( 2 0 ) . We can distinguish the
matrix by checking orthogonal wordsx 0 , x 5 , x 1 0 , and
x 1 5 for Salsa20 and horizontal wordsx 0 , x 1 , x 2 and
x 3 for ChaCha. If the matrix isX then go to Step 5;
otherwise, the matrix isX ( 2 0 ) and go to Step 4.
The matrix is X if these words are respectively identical
←0 , ←1 , ←2 , and←3 (for a 256-bit key); or←0 , ←1 , ←2 ,
and←3 (for a 128-bit key).

Step 4 CalculateX from X ( 2 0 ) using the inverse round func-
tion.

Step 5 Extract the key from the words contained inX . The key
is stored in wordsx 1 , x 2 , x 3 , x 4 , x 1 1 , x 1 2 , x 1 3 , x 1 4 in
Salsa20; andx 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 1 0 , x 1 1 in ChaCha.

V. C OUNTERMEASURE

Randomization, duplication, and error detecting codes are
known as general countermeasures against instruction skip-
ping [35], [16], but these impose performance overhead on the
implementation. A software implementation of a stream cipher
is required to achieve high performance and lightweight com-
putation. Thus, we propose an algorithm-specific but extremely
lightweight countermeasure based on the variable separation
technique.

A countermeasure against this sort of attacks is to separate
variables; that is, distinct variables store the inputs and output
of the addition. Consider an additionz � x + y. The addition
returns the initial value of variablez even if the addition
is skipped. Thus, an adversary can get the value of neither
variablex nory. Algorithm 5 shows the implementation using
countermeasure based on variable separation.

Algorithm 5 Countermeasure for fault injection attacks
Require: Key K , CounterC , and Nonce N
Ensure: Keystream Z
X � Initial Matrix(K, C, N )
Y � X ( 2 0 )

for i � 0 to 15 do
zi � x i + yi

end for
return Z

int add(int x, int y){
int z;
z = x + y;
return z;

}

Fig. 1. Variable separation at source-code level

We should note that variable separation at a source-code
level does not work in actual practice.

A. IA-32 and Intel 64 Architectures

The IA-32 and Intel 64 CPUs are mainly used in computers,
workstations, servers and supercomputer that require high
computational capability. Figure 1 show the source-code of
add function; and, Figure 2 and 3 are the assembly code for
the IA-32 and Intel 64 architectures, respectively, compiled
from the source-code. In the original source-code, the inputs
are stored in the variablesx, and y and the output is stored
in the variablez; they are separated. On the other hand, the
addition z = x + y is translated toaddl %edx, %eax
in the assembly code, which means that the addition result of
the values in the registerseax and edx is stored in the register
eax . The second input is stored into theeax in the assembly
code in Fig. 3 and 2; thus, the adversary can get the second
input by skipping theadd instruction. Note that the IA-32 and
Intel 64 architectures support only two-operand instruction for
addition; thus, we cannot use the variable separation method
essentially. However, the IA-32 and Intel 64 architectures have
a complicated structure, and Ivy Bridge microarchitecture has
up to 19 stage instruction pipeline. Thus, it is difficult to skip

add:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl 8(%ebp), %edx
movl 12(%ebp), %eax
addl %edx, %eax
leave
ret

Fig. 2. Assembly code for IA-32 architecture
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add:
pushq %rbp
movq %rsp, %rbp
movl %edi, -20(%rbp)
movl %esi, -24(%rbp)
movl -20(%rbp), %edx
movl -24(%rbp), %eax
addl %edx, %eax
popq %rbp
ret

Fig. 3. Assembly code for Intel 64 architectures

add:
mov r2, r0
add r0, r1, r2
bx lr

Fig. 4. Assembly code for ARM architectures

a specific instruction in actual CPUs with the IA-32 and Intel

64 architectures.

B. ARM Architectures

The ARM architectures target resource-constrained devices

including those in the IoT. Thus, the ARM has simpler RISC

architecture compared to the IA-32 and Intel 64 architectures.

The ARM Cortex-M0, M3, and M4 processors have a three-

stage instruction pipeline, and the Coretex-M0+ has a two-

stage pipeline. Yuce et al. [24] proposed an instruction skip-

ping based on a glitchy clock signal for an RISC-based CPU

with a seven-stage instruction pipeline. Accordingly, we must

protect the implementation on ARM architectures against fault

injection attacks.

The ARM architectures support three-operand instruction

such as add r0, r1, r2 , which means that the addition

result of the values in the registers r1 and r2 is stored in

the register r0 . Figure 4 shows the assembly code where

the countermeasure is used. Note that a compiler may output

code including add r0, r1 or add r0, r0, r1 for

input code z = x + y where input and output variables are

sepereated. We thus need to use assembly or inline-assembly

implementation to use the three-operand instruction explicitly.

Figure 5 shows the implementation of secure addition based

on the variable separation countermeasure using GCC inline

assembly.

C. Execution Time Overhead

We evaluate the execution overhead of our countermea-

sure using actual implementation of ChaCha. Google pro-

vides BoringSSL [36] that is a lightweight version of

OpenSSL [37], and it contains the implementation of ChaCha.

The chacha_core in chacha.c is the main function of

ChaCha, which takes the initial matrix as an input and outputs

the keystream. The assembly code of the chacha_core has

int add(int x, int y){
int z;
asm volatile(

"add %[s], %[t], %[u];"
: [s] "=r" (z)
: [t] "r" (x), [u] "r" (y)
:

);
return z;

}

Fig. 5. Implementation of Addition using GCC Inline Assembly

TABLE I
EXECUTION TIME OVERHEAD OF COUNTERMEASURES

Countermeasure Num. of Instructions Overhead [%]
Dual Modular Redundant 64 1.92

Triple Modular Redundunt 224 6.73
Parity 320 9.62

Parity-Barrel 208 6.25
Variable Separation (Proposed) 16 0.48

3,327 instructions as inlining the loops in the code. We use

a cross-compiler arm-linux-gnueabihf-gcc on Ubuntu

16.10 with an Intel 64 CPU and an option -S to obtain the

assembly code. The assembly code contains an instruction

add r2, r2, r3 to add a word of the initial matrix X
and that of the matrix X (20). We replace the instruction with

the instructions

add r4, r2, r3
mov r2, r4

to sperate the input and output variables. The program executes

the additional mov instruction 16-times. We can evaluate the

execution time overhead of our countermeasure is 16/3,327

= 0.0048 and less than 0.5% assuming that every instruction

completes in one clock cycle. Note that the real overhead is

even smaller than 0.5% since the some instructions including

ldr and str require more than one clock cycles to complete

while mov completes in one clock cycle.

Table I compares the number of additional instruction and

execution time overheads of the existing [35] and our proposed

countermeasures, assuming that these countermeasures apply

to the 16 add instructions. Our countermeasure can achieve

the least execution time overhead.

VI. CONCLUSION

We have proposed a fault injection attack against software

implementation of Salsa20 and ChaCha. The attack can extract

the key from the initial matrix of Salsa20 or ChaCha by

skipping an add instruction. We also proposed a lightweight

countermeasure with less than 0.5% execution time overhead

based on the variable separation technique that makes distinct

variables store the inputs and output of the addition step. The

IA-32 and Intel 64 architectures support only two-operand

add instructions, and the variable separation countermeasure
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is not available in the actual software. However, these architec-
tures have a multi-stage instruction pipeline with more than ten
stages. Thus, our proposed attack is hard to apply to Salsa20
or ChaCha. On the other hand, the ARM architectures have
an instruction pipeline with fewer stages, and some published
studies report that the instruction skipping is possible. Three-
operand instruction is available in the ARM architectures, and
we can use a variable separation countermeasure.

Our future research will explore the possibility of a fault
injection attack that targets the generation and assignment of
the initial matrixX and the matrixX (20), and attack in which
an adversary can arbitrarily select the block counter and nonce.
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Abstract „We propose a fault injection attack on Salsa20 and
ChaCha stream ciphers. In these stream ciphers, the initial
matrix X , which consists of constants, a key, a block counter,
and a nonce, is added to the matrixX (20) process with a round
function to generate a keystream. Our proposed fault injection
attack skips the corresponding addition (add) instruction to
obtain the matrixX or X (20) and extracts the key. General
countermeasures against instruction skipping, including random-
ization, duplication, and parity checking, are not suitable for the
software implementation of a stream cipher that requires high
performance and lightweight computation. We thus demonstrate
an algorithm-speci“c but extremely lightweight countermeasure
with less than 0.5% execution time overhead based on a variable
separation technique. Furthermore, we study the feasibility of the
countermeasure in the IA-32, Intel 64, and ARM architectures.

I. INTRODUCTION

Salsa20 [1] and ChaCha [2], [3] are stream ciphers designed

by Bernstein. These stream ciphers have the following fea-

tures: 1) the round function contains only addition, exclusive-

or, and fixed-distance rotations, 2) random access to a cipher-

text is possible by specifying an appropriate block number and

generating a 512-bit keystream.

Salsa20 is selected as a Profile I (for software implemen-

tation) in the eStream project, which is a standardization

project for stream ciphers in European countries. Nir and

Langley designed a sign-encryption ChaCha20-Poly1305[3]

by combining Poly1305 [4] as designed by Bernstein and

ChaCha with 20 rounds. ChaCha20-Poly1305 is used in

Google services and has been adopted by OpenSSH. TLS 1.3

is going to support ChaCha20-Poly1305.

This paper proposes a fault injection attack against software

implementation of stream ciphers Salsa20 and ChaCha. We

show a procedure to extract the key that skips the add
instruction in the key generation process and countermeasures

based on a variable separation technique. Furthermore, we

demonstrate an algorithm-specific but extremely lightweight

countermeasure with less than 0.5% execution time over-

head based on a variable separation technique. A software

implementation of a stream cipher is required to achieve

high performance and lightweight computation; and general

countermeasures against instruction skipping including ran-

domization, duplication (dual/triple modular redundant), and

parity checking may not be applicable. Then, we study the

feasibility of a variable separation countermeasure in the IA-

32 and Intel 64 and ARM architectures.

II. RELATED WORK

Boneh et al. [5] proposed a theoretical model to break

cryptographic schemes by taking advantage of random hard-

ware faults. They demonstrated that their attack applies to

implementations of RSA and Rabin signatures. Biham and

Shamir [6] showed that secret key cryptosystems are vulnera-

ble to a fault injection attack. They proposed a different fault

model, one that can break DES by analyzing a small number

of ciphertexts. Blömer and Seifert [7] applied an optical fault

injection attack [8] and an implementation-dependent attack

including timing attack [9] to AES. Piret and Quisquater [10]

proposed a differential fault injection attack against SPN struc-

tures applicable to AES and KHAZAD. Chen and Yen [11]

proposed a differential fault attack on the AES key schedule.

Tunstall et al. [12] proposed a differential fault injection attack

on AES based on a single fault. Roche et al. [13] proposed

a combined differential fault injection and side-channel attack

on AES.

Fouque et al. [14] shows that fault injection attack can

be used to execute arbitrary code. A fault injection attack

based on instruction skipping used on the square and multiply

operation was proposed by Schmidt and Herbst [15]. Barenghi

et al. [16] proposed an attack using instructions against AES

and RSA. Bar-El et al. [17] and Trichina and Korkiyan [18]

demonstrated that instruction skipping can be brought about

a laser pulse. Dehbaoui et al. [19] and Morno et al. [20]

showed that instruction skipping can be brought about using an

electromagnetic pulse. Instruction skipping based on a glitchy

clock signal was proposed by Balasch et al. [21], Korak and

Hoefler [22], Endo et al. [23], and Yuce et al [24].

The first fault injection attacks against stream ciphers were

introduced by Hoch and Shamir [25], which described attacks

against LILI-128 and SOBER-t32 and RC4. Other stream

ciphers including SNOW 3G [26], Trivium [27], HC-128 [28],

Rabbit [29], [30], Sosemanuk [31], Mugi [32] and MICKEY

2.0 [33], [34] have been analyzed using fault injection attack.

III. ALGORITHM DESCRIPTION: SALSA20 AND CHACHA

We describe here the algorithms of Salsa20 and ChaCha.

ChaCha is a variant of Salsa20, and we show how it the differs

2017 IEEE Trustcom/BigDataSE/ICESS
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from Salsa20.

A. Salsa20

The stream cipher Salsa20 operates on 32-bit words, takes as

input a 256-bit key K = ( k 0, k 1, k 2, k 3, k 4, k 5, k 6, k 7) or 128-

bit key K = ( k 0, k 1, k 2, k 3) and a 64-bit nonce N = ( n 0, n 1),
and produces a sequence of 512-bit keystream blocks. The C -

th block is the output of the Salsa20 function that takes as input

the key, the nonce, and a 64-bit block counter C = ( c 0, c 1)
corresponding to the integer i . This function acts on the 4 × 4
matrix of 32-bit words written as;

X =

�

�
�
�

x 0 x 1 x 2 x 3
x 4 x 5 x 6 x 7
x 8 x 9 x 10 x 11
x 12 x 13 x 14 x 15

�

�
�
�

=

�

�
�
�

� 0 k 0 k 1 k 2
k 3 � 1 n 0 n 1
c 0 c 1 � 2 k 0
k 1 k 2 k 3 � 3

�

�
�
� (for a 256-bit key)

or

�

�
�
�

� 0 k 0 k 1 k 2
k 3 � 1 n 0 n 1
c 0 c 1 � 2 k 4
k 5 k 6 k 7 � 3

�

�
�
� (for a 128-bit key)

dependent on the key length, where � and � are constants

such that � 0 = 0x61707865 , � 1 = 0x3320646E , � 2 =
0x79622D32 , � 3 = 0x6B206574 , � 0 = 0x61707865 , � 1 =
0x3120646E , � 2 = 0x79622D36 , and � 3 = 0x6B206574 .

The keystream block Z is defined as; Z = X + X (20), where

X (r) = Roundr(X ) is the round function of Salsa20 and +

is word-wise addition modulo 232 . If Z = X + X (r), it is

called “r -round Salsa20” or “Salsa20/r ”. The round function

consists of the following nonlinear functions that are called

quarter-round functions. A vector (a, b, c, d ) of four words is

transformed as;

b � b � ((a + d ) � 7)

c � c � ((b + a ) � 9)

d � d � ((c + b ) � 13)

a � a � ((d + c ) � 18).

The quarter-round functions are applied to columns

(x 0, x 4, x 8, x 12), (x 5, x 9, x 13, x 1), (x 10, x 14, x 2, x 6) and

(x 15, x 3, x 7, x 11) in odd rounds, and rows (x 0, x 1, x 2, x 3),
(x 5, x 6, x 7, x 4), (x 10, x 11, x 8, x 9) and (x 15, x 12, x 13, x 14) in

even rounds. Algorithm 1 describes the complete procedure

of Salsa20.

B. ChaCha

ChaCha is similar to Salsa20 except for the following three

modifications;

Algorithm 1 Salsa20

Require: Key K , Block Counter C and Nonce N
Ensure: Keystream Z

X � InitialMatrix(K, C, N )
Y � X
for i = 0 upto 9 do

/ * Column Round * /
(x 0, x 4, x 8, x 12) � QuarterRound(x 0, x 4, x 8, x 12)
(x 5, x 9, x 13, x 1) � QuarterRound(x 5, x 9, x 13, x 1)
(x 10, x 14, x 2, x 6) � QuarterRound(x 10, x 14, x 2, x 6)
(x 15, x 3, x 7, x 11) � QuarterRound(x 15, x 3, x 7, x 11)
/ * Row Round * /
(x 0, x 1, x 2, x 3) � QuarterRound(x 0, x 1, x 2, x 3)
(x 5, x 6, x 7, x 4) � QuarterRound(x 5, x 6, x 7, x 4)
(x 10, x 11, x 8, x 9) � QuarterRound(x 10, x 11, x 8, x 9)
(x 15, x 12, x 13, x 14) � QuarterRound(x 15, x 12, x 13, x 14)

end for
Z � X + Y
return Z

1) The composition of the four quarter-round functions are

defined as below;

a � a + b

d � d � a

d � d � 16

c � c + d

b � b � c

b � b � 12

a � a + b

d � d � a

d � d � 8

c � c + d

b � b � c

b � b � 7.

2) The composition of the initial matrix defined as below1;

X =

�

�
�
�

� 0 � 1 � 2 � 3
k 0 k 1 k 2 k 3
k 0 k 1 k 2 k 3
n 0 n 1 c 0 c 1

�

�
�
� (for a 256-bit key)

or

�

�
�
�

� 0 � 1 � 2 � 3
k 0 k 1 k 2 k 3
k 4 k 5 k 6 k 7
v 0 v 1 i 0 i 1

�

�
�
� (for a 128-bit key).

3) The quarter-round functions are applied to the columns

(x 0, x 4, x 8, x 12), (x 5, x 9, x 13, x 1), (x 10, x 14, x 2, x 6)
and (x 15, x 3, x 7, x 11) in odd rounds, and diagonals

1The IETF version [3] of ChaCha takes a 32-bit block counter C = ( c0)
and 96-bit nonce N = ( n0, n1, n2) , and x12 = c0 , x13 = n0 , x14 = n1 ,
x15 = n2 . Furthermore, a 128-bit key is out of scope in the IETF version.
However, this difference does not affect our proposed attack.
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Algorithm 2 ChaCha

Require: Key K , Block Counter C , and Nonce N
Ensure: Keystream Z

X σ InitialMatrix (K, C, N )
Y σ X
for i σ 0 to 9 do

/ * Column Round * /
(x 0, x 4, x 8, x 12)σ QuarterRound (x 0, x 4, x 8, x 12)
(x 1, x 5, x 9, x 13)σ QuarterRound (x 1, x 5, x 9, x 13)
(x 2, x 6, x 10, x 14)σ QuarterRound (x 2, x 6, x 10, x 14)
(x 3, x 7, x 11, x 15)σ QuarterRound (x 3, x 7, x 11, x 15)
/ * Diagonal Round * /
(x 0, x 5, x 10, x 15)σ QuarterRound (x 0, x 5, x 10, x 15)
(x 1, x 6, x 11, x 12)σ QuarterRound (x 1, x 6, x 11, x 12)
(x 2, x 7, x 8, x 13)σ QuarterRound (x 2, x 7, x 8, x 13)
(x 3, x 4, x 9, x 14)σ QuarterRound (x 3, x 4, x 9, x 14)

end for

Z σ X + Y
return Z

Algorithm 3 Implementation 1 of ChaCha

Require: Key K , Counter C , and Nonce N
Ensure: Keystream Z

X σ Initial Matrix (K, C, N )
Z σ X
X σ X (20)

for i σ 0 to 15 do

z i σ z i + x i

end for

return Z

(x 0, x 5, x 10, x 15), (x 1, x 6, x 11, x 12), (x 2, x 7, x 8, x 13)
and (x 3, x 4, x 9, x 14) in even rounds.

Algorithm 2 describes the complete procedure of ChaCha.

I V. P R O P O S E D A T TA C K

The key streams of Salsa20 and ChaCha are calculated
as the summation of the initial matrix X and the matrix
X (20) processed by the round function. Our proposed fault
injection attack makes Salsa20 and ChaCha output the words
of the matrix X or X (20)depending on their implementations.
Algorithm 3 and 4 shows the implementations of Salsa20
and ChaCha. An adversary can obtain the elements of the
initial matrix X or the matrix X (20) processed by the round
function by skipping the add instruction of the “rst or second
implementation, respectively. The adversary can extract the
key from both X and X (20) since the round functions of
Salsa20 and ChaCha are invertible.

A. Invertibility of Round Function

The quarter-round functions of Salsa20 and ChaCha contain
only additions, exclusive-or, and constant-distance rotations.

Algorithm 4 Implementation 2 of ChaCha

Require: Key K , Counter C , and Nonce N
Ensure: Keystream Z

X σ Initial Matrix (K, C, N )
Z σ X (20)

for i σ 0 to 15 do

z i σ z i + x i

end for

return Z

These basic operations can be described as follows;

a d d : (x, y ) �� (x + y, y ),
xor : (x, y ) �� (x τ y, y ),
rotl(n ) :x �� x � n,

and they are invertible;

a d d Š 1 = s u b : (x, y ) �� (x Š y, y ),
xor Š 1 = xor : (x, y ) �� (x τ y, y ),
rotl(n )Š 1 = rotr (n ) :x �� x � n.

The quarter-round functions of Salsa20 and ChaCha are thus
invertible. The inverse quarter-round function of Salsa20 is
given as;

a σ a τ ((c + d ) � 18)
d σ d τ ((b + c ) � 13)
c σ c τ ((a + b ) � 9)
b σ b τ ((a + d ) � 7),

and that of ChaCha is given as;

b σ b � 7
b σ b τ c

c σ c Š d

d σ d � 8
d σ d τ a

a σ a Š b

b σ b � 12
b σ b τ c

c σ c Š d

d σ d � 16
d σ d τ a

a σ a Š b.

The round function of ChaCha consists of four quarter-round
functions and distinct 4-tuples of words are processed with
the quarter-round functions. Thus, the round function is also
invertible. There is no entropy loss in the process of the round
function.

Note that the entire key-generation process is not necessarily
invertible. The keystream Z is calculated asX + X (20) and
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an irreversible addition irradd : (x, y) �→ x + y that has two

inputs and one output.

B. Attack Procedure

Here we show the procedure for the fault injection attack

on the software implementation of Salsa20 and ChaCha. Our

proposed attack assumes that the key is fixed and an adversary

can generate the keystream any number of times in the target

implementation. The adversary does not have to select the

block number or nonce arbitrarily; however, one can repeatedly

generate a keystream with the same block counter and nonce.

For example, our proposed attack applies to a decryption

module for digital right management (DRM) in which a fixed

key is embedded in the module using tamper-proof techniques.

Step 1 Skip one of the add instructions that add words of

the initial matrix X and the matrix processed by the

round-function X(20). The value of one word in the

keystream changes if one of the add instructions is

correctly skipped; then, store the word. The step fails if

multiple values of words in the keystream change, i.e.,

if multiple instructions or some instructions in round

functions are skipped.

Step 2 Repeat Step 1 until obtaining the changed values of all

of the word in the keystream.

Step 3 Generate a matrix from the words obtained in Step 1.

The matrix is ether X or X(20). We can distinguish the

matrix by checking orthogonal words x0, x5, x10, and

x15 for Salsa20 and horizontal words x0, x1, x2 and

x3 for ChaCha. If the matrix is X then go to Step 5;

otherwise, the matrix is X(20) and go to Step 4.

The matrix is X if these words are respectively identical

σ0, σ1, σ2, and σ3 (for a 256-bit key); or σ0, σ1, σ2,

and σ3 (for a 128-bit key).

Step 4 Calculate X from X(20) using the inverse round func-

tion.

Step 5 Extract the key from the words contained in X . The key

is stored in words x1, x2, x3, x4, x11, x12, x13, x14 in

Salsa20; and x4, x5, x6, x7, x8, x9, x10, x11 in ChaCha.

V. COUNTERMEASURE

Randomization, duplication, and error detecting codes are

known as general countermeasures against instruction skip-

ping [35], [16], but these impose performance overhead on the

implementation. A software implementation of a stream cipher

is required to achieve high performance and lightweight com-

putation. Thus, we propose an algorithm-specific but extremely

lightweight countermeasure based on the variable separation

technique.

A countermeasure against this sort of attacks is to separate

variables; that is, distinct variables store the inputs and output

of the addition. Consider an addition z ← x+y. The addition

returns the initial value of variable z even if the addition

is skipped. Thus, an adversary can get the value of neither

variable x nor y. Algorithm 5 shows the implementation using

countermeasure based on variable separation.

Algorithm 5 Countermeasure for fault injection attacks

Require: Key K, Counter C, and Nonce N
Ensure: Keystream Z
X ← Initial Matrix(K,C,N)
Y ← X(20)

for i← 0 to 15 do
zi ← xi + yi

end for
return Z

int add(int x, int y){
int z;
z = x + y;
return z;

}

Fig. 1. Variable separation at source-code level

We should note that variable separation at a source-code

level does not work in actual practice.

A. IA-32 and Intel 64 Architectures

The IA-32 and Intel 64 CPUs are mainly used in computers,

workstations, servers and supercomputer that require high

computational capability. Figure 1 show the source-code of

add function; and, Figure 2 and 3 are the assembly code for

the IA-32 and Intel 64 architectures, respectively, compiled

from the source-code. In the original source-code, the inputs

are stored in the variables x, and y and the output is stored

in the variable z; they are separated. On the other hand, the

addition z = x + y is translated to addl %edx, %eax
in the assembly code, which means that the addition result of

the values in the registers eax and edx is stored in the register

eax. The second input is stored into the eax in the assembly

code in Fig. 3 and 2; thus, the adversary can get the second

input by skipping the add instruction. Note that the IA-32 and

Intel 64 architectures support only two-operand instruction for

addition; thus, we cannot use the variable separation method

essentially. However, the IA-32 and Intel 64 architectures have

a complicated structure, and Ivy Bridge microarchitecture has

up to 19 stage instruction pipeline. Thus, it is difficult to skip

add:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl 8(%ebp), %edx
movl 12(%ebp), %eax
addl %edx, %eax
leave
ret

Fig. 2. Assembly code for IA-32 architecture
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add:

pushq %rbp

movq %rsp, %rbp

movl %edi, -20(%rbp)

movl %esi, -24(%rbp)

movl -20(%rbp), %edx

movl -24(%rbp), %eax

addl %edx, %eax

popq %rbp

ret

Fig. 3. Assembly code for Intel 64 architectures

add:

mov r2, r0

add r0, r1, r2

bx lr

Fig. 4. Assembly code for ARM architectures

a speci“c instruction in actual CPUs with the IA-32 and Intel
64 architectures.

B. ARM Architectures

The ARM architectures target resource-constrained devices
including those in the IoT. Thus, the ARM has simpler RISC
architecture compared to the IA-32 and Intel 64 architectures.
The ARM Cortex-M0, M3, and M4 processors have a three-
stage instruction pipeline, and the Coretex-M0+ has a two-
stage pipeline. Yuce et al. [24] proposed an instruction skip-
ping based on a glitchy clock signal for an RISC-based CPU
with a seven-stage instruction pipeline. Accordingly, we must
protect the implementation on ARM architectures against fault
injection attacks.
The ARM architectures support three-operand instruction

such as add r0, r1, r2 , which means that the addition
result of the values in the registersr1 and r2 is stored in
the registerr0 . Figure 4 shows the assembly code where
the countermeasure is used. Note that a compiler may output
code including add r0, r1 or add r0, r0, r1 for
input code z = x + y where input and output variables are
sepereated. We thus need to use assembly or inline-assembly
implementation to use the three-operand instruction explicitly.
Figure 5 shows the implementation of secure addition based
on the variable separation countermeasure using GCC inline
assembly.

C. Execution Time Overhead

We evaluate the execution overhead of our countermea-
sure using actual implementation of ChaCha. Google pro-
vides BoringSSL [36] that is a lightweight version of
OpenSSL [37], and it contains the implementation of ChaCha.
The chacha_core in chacha.c is the main function of
ChaCha, which takes the initial matrix as an input and outputs
the keystream. The assembly code of the chacha_core has

int add(int x, int y){

int z;

asm volatile(

"add %[s], %[t], %[u];"

: [s] "=r" (z)

: [t] "r" (x), [u] "r" (y)

:

);

return z;

}

Fig. 5. Implementation of Addition using GCC Inline Assembly

TABLE I
E X E C U T I O N T I M E O V E R H E A D O F C O U N T E R M E A S U R E S

Countermeasure Num. of Instructions Overhead [%]
Dual Modular Redundant 64 1.92

Triple Modular Redundunt 224 6.73
Parity 320 9.62

Parity-Barrel 208 6.25
Variable Separation (Proposed) 16 0.48

3,327 instructions as inlining the loops in the code. We use
a cross-compiler arm-linux-gnueabihf-gcc on Ubuntu
16.10 with an Intel 64 CPU and an option -S to obtain the
assembly code. The assembly code contains an instruction
add r2, r2, r3 to add a word of the initial matrixX
and that of the matrixX (20) . We replace the instruction with
the instructions

add r4, r2, r3

mov r2, r4

to sperate the input and output variables. The program executes
the additionalmov instruction 16-times. We can evaluate the
execution time overhead of our countermeasure is 16/3,327
= 0.0048 and less than 0.5% assuming that every instruction
completes in one clock cycle. Note that the real overhead is
even smaller than 0.5% since the some instructions including
ldr and str require more than one clock cycles to complete
while mov completes in one clock cycle.
Table I compares the number of additional instruction and

execution time overheads of the existing [35] and our proposed
countermeasures, assuming that these countermeasures apply
to the 16 add instructions. Our countermeasure can achieve
the least execution time overhead.

V I . C O N C L U S I O N

We have proposed a fault injection attack against software
implementation of Salsa20 and ChaCha. The attack can extract
the key from the initial matrix of Salsa20 or ChaCha by
skipping an add instruction. We also proposed a lightweight
countermeasure with less than 0.5% execution time overhead
based on the variable separation technique that makes distinct
variables store the inputs and output of the addition step. The
IA-32 and Intel 64 architectures support only two-operand
add instructions, and the variable separation countermeasure
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is not available in the actual software. However, these architec-

tures have a multi-stage instruction pipeline with more than ten

stages. Thus, our proposed attack is hard to apply to Salsa20

or ChaCha. On the other hand, the ARM architectures have

an instruction pipeline with fewer stages, and some published

studies report that the instruction skipping is possible. Three-

operand instruction is available in the ARM architectures, and

we can use a variable separation countermeasure.

Our future research will explore the possibility of a fault

injection attack that targets the generation and assignment of

the initial matrix X and the matrix X (20) , and attack in which

an adversary can arbitrarily select the block counter and nonce.
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Abstract „We propose a fault injection attack on Salsa20 and
ChaCha stream ciphers. In these stream ciphers, the initial
matrix X , which consists of constants, a key, a block counter,
and a nonce, is added to the matrixX (20) process with a round
function to generate a keystream. Our proposed fault injection
attack skips the corresponding addition (add) instruction to
obtain the matrix X or X (20) and extracts the key. General
countermeasures against instruction skipping, including random-
ization, duplication, and parity checking, are not suitable for the
software implementation of a stream cipher that requires high
performance and lightweight computation. We thus demonstrate
an algorithm-speci“c but extremely lightweight countermeasure
with less than 0.5% execution time overhead based on a variable
separation technique. Furthermore, we study the feasibility of the
countermeasure in the IA-32, Intel 64, and ARM architectures.

I. INTRODUCTION

Salsa20 [1] and ChaCha [2], [3] are stream ciphers designed
by Bernstein. These stream ciphers have the following fea-
tures: 1) the round function contains only addition, exclusive-
or, and “xed-distance rotations, 2) random access to a cipher-
text is possible by specifying an appropriate block number and
generating a 512-bit keystream.
Salsa20 is selected as a Pro“le I (for software implemen-

tation) in the eStream project, which is a standardization
project for stream ciphers in European countries. Nir and
Langley designed a sign-encryption ChaCha20-Poly1305[3]
by combining Poly1305 [4] as designed by Bernstein and
ChaCha with 20 rounds. ChaCha20-Poly1305 is used in
Google services and has been adopted by OpenSSH. TLS 1.3
is going to support ChaCha20-Poly1305.
This paper proposes a fault injection attack against software

implementation of stream ciphers Salsa20 and ChaCha. We
show a procedure to extract the key that skips theadd
instruction in the key generation process and countermeasures
based on a variable separation technique. Furthermore, we
demonstrate an algorithm-speci“c but extremely lightweight
countermeasure with less than 0.5% execution time over-
head based on a variable separation technique. A software
implementation of a stream cipher is required to achieve
high performance and lightweight computation; and general
countermeasures against instruction skipping including ran-
domization, duplication (dual/triple modular redundant), and
parity checking may not be applicable. Then, we study the

feasibility of a variable separation countermeasure in the IA-
32 and Intel 64 and ARM architectures.

II. RELATED W ORK

Boneh et al. [5] proposed a theoretical model to break
cryptographic schemes by taking advantage of random hard-
ware faults. They demonstrated that their attack applies to
implementations of RSA and Rabin signatures. Biham and
Shamir [6] showed that secret key cryptosystems are vulnera-
ble to a fault injection attack. They proposed a different fault
model, one that can break DES by analyzing a small number
of ciphertexts. Blömer and Seifert [7] applied an optical fault
injection attack [8] and an implementation-dependent attack
including timing attack [9] to AES. Piret and Quisquater [10]
proposed a differential fault injection attack against SPN struc-
tures applicable to AES and KHAZAD. Chen and Yen [11]
proposed a differential fault attack on the AES key schedule.
Tunstall et al. [12] proposed a differential fault injection attack
on AES based on a single fault. Roche et al. [13] proposed
a combined differential fault injection and side-channel attack
on AES.
Fouque et al. [14] shows that fault injection attack can

be used to execute arbitrary code. A fault injection attack
based on instruction skipping used on the square and multiply
operation was proposed by Schmidt and Herbst [15]. Barenghi
et al. [16] proposed an attack using instructions against AES
and RSA. Bar-El et al. [17] and Trichina and Korkiyan [18]
demonstrated that instruction skipping can be brought about
a laser pulse. Dehbaoui et al. [19] and Morno et al. [20]
showed that instruction skipping can be brought about using an
electromagnetic pulse. Instruction skipping based on a glitchy
clock signal was proposed by Balasch et al. [21], Korak and
Hoe”er [22], Endo et al. [23], and Yuce et al [24].
The “rst fault injection attacks against stream ciphers were

introduced by Hoch and Shamir [25], which described attacks
against LILI-128 and SOBER-t32 and RC4. Other stream
ciphers including SNOW 3G [26], Trivium [27], HC-128 [28],
Rabbit [29], [30], Sosemanuk [31], Mugi [32] and MICKEY
2.0 [33], [34] have been analyzed using fault injection attack.

III. ALGORITHM D ESCRIPTION: SALSA 20AND CHA CHA

We describe here the algorithms of Salsa20 and ChaCha.
ChaCha is a variant of Salsa20, and we show how it the differs
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from Salsa20.

A. Salsa20

The stream cipher Salsa20 operates on 32-bit words, takes as
input a 256-bit keyK = ( k0 , k1 , k2 , k3 , k4 , k5 , k6 , k7) or 128-
bit keyK = ( k0 , k1 , k2 , k3)and a 64-bit nonceN = ( n0 , n 1),
and produces a sequence of 512-bit keystream blocks. TheC-
th block is the output of the Salsa20 function that takes as input
the key, the nonce, and a 64-bit block counterC = ( c0 , c1)
corresponding to the integeri. This function acts on the4 × 4
matrix of 32-bit words written as;

X =

�

�
�
�

x 0 x 1 x 2 x 3

x 4 x 5 x 6 x 7

x 8 x 9 x 10 x 11

x 12 x 13 x 14 x 15

�

�
�
�

=

�

�
�
�

� 0 k0 k1 k2

k3 � 1 n0 n1

c0 c1 � 2 k0

k1 k2 k3 � 3

�

�
�
� (for a 256-bit key)

or

�

�
�
�

� 0 k0 k1 k2

k3 � 1 n0 n1

c0 c1 � 2 k4

k5 k6 k7 � 3

�

�
�
� (for a 128-bit key)

dependent on the key length, where� and � are constants
such that� 0 = 0x61707865, � 1 = 0x3320646E, � 2 =
0x79622D32, � 3 = 0x6B206574, � 0 = 0x61707865, � 1 =
0x3120646E,� 2 = 0x79622D36, and� 3 = 0x6B206574.
The keystream blockZ is de“ned as;Z = X + X (20) , where

X (r ) = Roundr (X ) is the round function of Salsa20 and +
is word-wise addition modulo232. IfZ = X + X (r ), it is
called •r-round Salsa20Ž or •Salsa20/r Ž. The round function
consists of the following nonlinear functions that are called
quarter-round functions. A vector(a, b, c, d) of four words is
transformed as;

b � b � ((a + d) � 7)

c � c � ((b + a) � 9)

d � d � ((c + b) � 13)

a � a � ((d + c) � 18).

The quarter-round functions are applied to columns
(x 0 , x 4 , x 8 , x 12), (x 5 , x 9 , x 13 , x 1), (x 10 , x 14 , x 2 , x 6) and
(x 15 , x 3 , x 7 , x 11) in odd rounds, and rows(x 0 , x 1 , x 2 , x 3),
(x 5 , x 6 , x 7 , x 4),(x 10 , x 11 , x 8 , x 9) and(x 15 , x 12 , x 13 , x 14) in
even rounds. Algorithm 1 describes the complete procedure
of Salsa20.

B. ChaCha

ChaCha is similar to Salsa20 except for the following three
modi“cations;

Algorithm 1 Salsa20

Require: Key K , Block CounterC and NonceN
Ensure: KeystreamZ

X � InitialMatrix(K, C, N )
Y � X
for i = 0 upto9 do

/ * Column Round * /
(x 0 , x 4 , x 8 , x 12) � QuarterRound(x 0 , x 4 , x 8 , x 12)
(x 5 , x 9 , x 13 , x 1) � QuarterRound(x 5 , x 9 , x 13 , x 1)
(x 10 , x 14 , x 2 , x 6) � QuarterRound(x 10 , x 14 , x 2 , x 6)
(x 15 , x 3 , x 7 , x 11) � QuarterRound(x 15 , x 3 , x 7 , x 11)
/ * Row Round * /
(x 0 , x 1 , x 2 , x 3) � QuarterRound(x 0 , x 1 , x 2 , x 3)
(x 5 , x 6 , x 7 , x 4) � QuarterRound(x 5 , x 6 , x 7 , x 4)
(x 10 , x 11 , x 8 , x 9) � QuarterRound(x 10 , x 11 , x 8 , x 9)
(x 15 , x 12 , x 13 , x 14) � QuarterRound(x 15 , x 12 , x 13 , x 14)

end for
Z � X + Y
return Z

1) The composition of the four quarter-round functions are
de“ned as below;

a � a + b

d � d � a

d � d � 16

c � c + d

b � b � c

b � b � 12

a � a + b

d � d � a

d � d � 8

c � c + d

b � b � c

b � b � 7.

2) The composition of the initial matrix de“ned as below1;

X =

�

�
�
�

� 0 � 1 � 2 � 3

k0 k1 k2 k3

k0 k1 k2 k3

n0 n1 c0 c1

�

�
�
� (for a 256-bit key)

or

�

�
�
�

� 0 � 1 � 2 � 3
k0 k1 k2 k3

k4 k5 k6 k7

v0 v1 i0 i1

�

�
�
� (for a 128-bit key).

3) The quarter-round functions are applied to the columns
(x 0 , x 4 , x 8 , x 12), (x 5 , x 9 , x 13 , x 1), (x 10 , x 14 , x 2 , x 6)
and (x 15 , x 3 , x 7 , x 11) in odd rounds, and diagonals

1The IETF version [3] of ChaCha takes a 32-bit block counterC = ( c0)
and 96-bit nonceN = ( n0, n1, n2), andx12 = c0,x13 = n0,x14 = n1,
x15 = n2. Furthermore, a 128-bit key is out of scope in the IETF version.
However, this difference does not affect our proposed attack.
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Algorithm 2ChaCha

Require:Key K , Block Counter C , and Nonce N
Ensure:Keystream Z

X σ InitialMatrix(K, C, N )
Y σ X
fori σ 0 to9 do

/* Column Round */
(x 0, x 4, x 8, x 12) σ QuarterRound(x 0, x 4, x 8, x 12)
(x 1, x 5, x 9, x 13) σ QuarterRound(x 1, x 5, x 9, x 13)
(x 2, x 6, x 10, x 14) σ QuarterRound(x 2, x 6, x 10, x 14)
(x 3, x 7, x 11, x 15) σ QuarterRound(x 3, x 7, x 11, x 15)
/* Diagonal Round */
(x 0, x 5, x 10, x 15) σ QuarterRound(x 0, x 5, x 10, x 15)
(x 1, x 6, x 11, x 12) σ QuarterRound(x 1, x 6, x 11, x 12)
(x 2, x 7, x 8, x 13) σ QuarterRound(x 2, x 7, x 8, x 13)
(x 3, x 4, x 9, x 14) σ QuarterRound(x 3, x 4, x 9, x 14)

end for
Z σ X + Y
returnZ

Algorithm 3Implementation 1 of ChaCha

Require:Key K , Counter C , and Nonce N
Ensure:Keystream Z

X σ Initial Matrix(K, C, N )
Z σ X
X σ X (20)

fori σ 0 to15 do
z i σ z i + x i

end for
returnZ

(x 0, x 5, x 10, x 15), (x 1, x 6, x 11, x 12), (x 2, x 7, x 8, x 13)
and (x 3, x 4, x 9, x 14) in even rounds.

Algorithm 2 describes the complete procedure of ChaCha.

IV. PROPOSED ATTACK

The key streams of Salsa20 and ChaCha are calculated

as the summation of the initial matrix X and the matrix

X (20) processed by the round function. Our proposed fault

injection attack makes Salsa20 and ChaCha output the words

of the matrix X or X (20) depending on their implementations.

Algorithm 3 and 4 shows the implementations of Salsa20

and ChaCha. An adversary can obtain the elements of the

initial matrix X or the matrix X (20) processed by the round

function by skipping the add instruction of the first or second

implementation, respectively. The adversary can extract the

key from both X and X (20) since the round functions of

Salsa20 and ChaCha are invertible.

A. Invertibility of Round Function

The quarter-round functions of Salsa20 and ChaCha contain

only additions, exclusive-or, and constant-distance rotations.

Algorithm 4Implementation 2 of ChaCha

Require:Key K , Counter C , and Nonce N
Ensure:Keystream Z

X σ Initial Matrix(K, C, N )
Z σ X (20)

fori σ 0 to15 do
z i σ z i + x i

end for
returnZ

These basic operations can be described as follows;

add : (x, y ) �� (x + y, y ),

xor : (x, y ) �� (x τ y, y ),

rotl (n) : x �� x � n,

and they are invertible;

addŠ 1 = sub : (x, y ) �� (x Š y, y ),

xorŠ 1 = xor : (x, y ) �� (x τ y, y ),

rotl (n)Š 1 = rotr (n) : x �� x � n.

The quarter-round functions of Salsa20 and ChaCha are thus

invertible. The inverse quarter-round function of Salsa20 is

given as;

a σ a τ ((c + d) � 18)

d σ d τ ((b+ c) � 13)

c σ c τ ((a + b) � 9)

b σ b τ ((a + d) � 7),

and that of ChaCha is given as;

b σ b � 7

b σ b τ c

c σ c Š d

d σ d � 8

d σ d τ a

a σ a Š b

b σ b � 12

b σ b τ c

c σ c Š d

d σ d � 16

d σ d τ a

a σ a Š b.

The round function of ChaCha consists of four quarter-round

functions and distinct 4-tuples of words are processed with

the quarter-round functions. Thus, the round function is also

invertible. There is no entropy loss in the process of the round

function.

Note that the entire key-generation process is not necessarily

invertible. The keystream Z is calculated as X + X (20) and
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an irreversible additionirradd : (x, y) �� x + y that has two
inputs and one output.

B. Attack Procedure

Here we show the procedure for the fault injection attack
on the software implementation of Salsa20 and ChaCha. Our
proposed attack assumes that the key is “xed and an adversary
can generate the keystream any number of times in the target
implementation. The adversary does not have to select the
block number or nonce arbitrarily; however, one can repeatedly
generate a keystream with the same block counter and nonce.
For example, our proposed attack applies to a decryption
module for digital right management (DRM) in which a “xed
key is embedded in the module using tamper-proof techniques.

Step 1 Skip one of theadd instructions that add words of
the initial matrixX and the matrix processed by the
round-functionX (20) . The value of one word in the
keystream changes if one of theadd instructions is
correctly skipped; then, store the word. The step fails if
multiple values of words in the keystream change, i.e.,
if multiple instructions or some instructions in round
functions are skipped.

Step 2 Repeat Step 1 until obtaining the changed values of all
of the word in the keystream.

Step 3 Generate a matrix from the words obtained in Step 1.
The matrix is etherX orX (20) . We can distinguish the
matrix by checking orthogonal wordsx0,x5,x10, and
x15 for Salsa20 and horizontal wordsx0,x1,x2 and
x3 for ChaCha. If the matrix isX then go to Step 5;
otherwise, the matrix isX (20) and go to Step 4.
The matrix isX if these words are respectively identical
σ0,σ1,σ2, andσ3 (for a 256-bit key); orσ0,σ1,σ2,
andσ3 (for a 128-bit key).

Step 4 CalculateX fromX (20) using the inverse round func-
tion.

Step 5 Extract the key from the words contained inX. The key
is stored in wordsx1,x2,x3,x4,x11,x12,x13,x14 in
Salsa20; andx4,x5,x6,x7,x8,x9,x10,x11 in ChaCha.

V. COUNTERMEASURE

Randomization, duplication, and error detecting codes are
known as general countermeasures against instruction skip-
ping [35], [16], but these impose performance overhead on the
implementation. A software implementation of a stream cipher
is required to achieve high performance and lightweight com-
putation. Thus, we propose an algorithm-speci“c but extremely
lightweight countermeasure based on the variable separation
technique.
A countermeasure against this sort of attacks is to separate

variables; that is, distinct variables store the inputs and output
of the addition. Consider an additionz � x + y. The addition
returns the initial value of variablez even if the addition
is skipped. Thus, an adversary can get the value of neither
variablex nory. Algorithm 5 shows the implementation using
countermeasure based on variable separation.

Algorithm 5 Countermeasure for fault injection attacks

Require: KeyK, CounterC, and NonceN
Ensure: KeystreamZ
X � Initial Matrix(K,C,N )
Y � X (20)

for i � 0 to 15do
zi � xi + yi

end for
return Z

int add(int x, int y){
int z;
z = x + y;
return z;

}

Fig. 1. Variable separation at source-code level

We should note that variable separation at a source-code
level does not work in actual practice.

A. IA-32 and Intel 64 Architectures

The IA-32 and Intel 64 CPUs are mainly used in computers,
workstations, servers and supercomputer that require high
computational capability. Figure 1 show the source-code of
add function; and, Figure 2 and 3 are the assembly code for
the IA-32 and Intel 64 architectures, respectively, compiled
from the source-code. In the original source-code, the inputs
are stored in the variablesx, andy and the output is stored
in the variablez; they are separated. On the other hand, the
additionz = x + y is translated toaddl %edx, %eax
in the assembly code, which means that the addition result of
the values in the registerseax andedx is stored in the register
eax . The second input is stored into theeax in the assembly
code in Fig. 3 and 2; thus, the adversary can get the second
input by skipping theadd instruction. Note that the IA-32 and
Intel 64 architectures support only two-operand instruction for
addition; thus, we cannot use the variable separation method
essentially. However, the IA-32 and Intel 64 architectures have
a complicated structure, and Ivy Bridge microarchitecture has
up to 19 stage instruction pipeline. Thus, it is dif“cult to skip

add:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl 8(%ebp), %edx
movl 12(%ebp), %eax
addl %edx, %eax
leave
ret

Fig. 2. Assembly code for IA-32 architecture
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add:
pushq %rbp
movq %rsp, %rbp
movl %edi, -20(%rbp)
movl %esi, -24(%rbp)
movl -20(%rbp), %edx
movl -24(%rbp), %eax
addl %edx, %eax
popq %rbp
ret

Fig. 3. Assembly code for Intel 64 architectures

add:
mov r2, r0
add r0, r1, r2
bx lr

Fig. 4. Assembly code for ARM architectures

a specific instruction in actual CPUs with the IA-32 and Intel

64 architectures.

B. ARM Architectures

The ARM architectures target resource-constrained devices

including those in the IoT. Thus, the ARM has simpler RISC

architecture compared to the IA-32 and Intel 64 architectures.

The ARM Cortex-M0, M3, and M4 processors have a three-

stage instruction pipeline, and the Coretex-M0+ has a two-

stage pipeline. Yuce et al. [24] proposed an instruction skip-

ping based on a glitchy clock signal for an RISC-based CPU

with a seven-stage instruction pipeline. Accordingly, we must

protect the implementation on ARM architectures against fault

injection attacks.

The ARM architectures support three-operand instruction

such as add r0, r1, r2, which means that the addition

result of the values in the registers r1 and r2 is stored in

the register r0. Figure 4 shows the assembly code where

the countermeasure is used. Note that a compiler may output

code including add r0, r1 or add r0, r0, r1 for

input code z = x + y where input and output variables are

sepereated. We thus need to use assembly or inline-assembly

implementation to use the three-operand instruction explicitly.

Figure 5 shows the implementation of secure addition based

on the variable separation countermeasure using GCC inline

assembly.

C. Execution Time Overhead

We evaluate the execution overhead of our countermea-

sure using actual implementation of ChaCha. Google pro-

vides BoringSSL [36] that is a lightweight version of

OpenSSL [37], and it contains the implementation of ChaCha.

The chacha_core in chacha.c is the main function of

ChaCha, which takes the initial matrix as an input and outputs

the keystream. The assembly code of the chacha_core has

int add(int x, int y){
int z;
asm volatile(

"add %[s], %[t], %[u];"
: [s] "=r" (z)
: [t] "r" (x), [u] "r" (y)
:

);
return z;

}

Fig. 5. Implementation of Addition using GCC Inline Assembly

TABLE I
EXECUTION TIME OVERHEAD OF COUNTERMEASURES

Countermeasure Num. of Instructions Overhead [%]
Dual Modular Redundant 64 1.92

Triple Modular Redundunt 224 6.73
Parity 320 9.62

Parity-Barrel 208 6.25
Variable Separation (Proposed) 16 0.48

3,327 instructions as inlining the loops in the code. We use

a cross-compiler arm-linux-gnueabihf-gcc on Ubuntu

16.10 with an Intel 64 CPU and an option -S to obtain the

assembly code. The assembly code contains an instruction

add r2, r2, r3 to add a word of the initial matrix X
and that of the matrix X(20). We replace the instruction with

the instructions

add r4, r2, r3
mov r2, r4

to sperate the input and output variables. The program executes

the additional mov instruction 16-times. We can evaluate the

execution time overhead of our countermeasure is 16/3,327

= 0.0048 and less than 0.5% assuming that every instruction

completes in one clock cycle. Note that the real overhead is

even smaller than 0.5% since the some instructions including

ldr and str require more than one clock cycles to complete

while mov completes in one clock cycle.

Table I compares the number of additional instruction and

execution time overheads of the existing [35] and our proposed

countermeasures, assuming that these countermeasures apply

to the 16 add instructions. Our countermeasure can achieve

the least execution time overhead.

VI. CONCLUSION

We have proposed a fault injection attack against software

implementation of Salsa20 and ChaCha. The attack can extract

the key from the initial matrix of Salsa20 or ChaCha by

skipping an add instruction. We also proposed a lightweight

countermeasure with less than 0.5% execution time overhead

based on the variable separation technique that makes distinct

variables store the inputs and output of the addition step. The

IA-32 and Intel 64 architectures support only two-operand

add instructions, and the variable separation countermeasure
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is not available in the actual software. However, these architec-
tures have a multi-stage instruction pipeline with more than ten
stages. Thus, our proposed attack is hard to apply to Salsa20
or ChaCha. On the other hand, the ARM architectures have
an instruction pipeline with fewer stages, and some published
studies report that the instruction skipping is possible. Three-
operand instruction is available in the ARM architectures, and
we can use a variable separation countermeasure.
Our future research will explore the possibility of a fault

injection attack that targets the generation and assignment of
the initial matrixX and the matrixX (20) , and attack in which
an adversary can arbitrarily select the block counter and nonce.
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Abstract „We propose a fault injection attack on Salsa20 and
ChaCha stream ciphers. In these stream ciphers, the initial
matrix X , which consists of constants, a key, a block counter,
and a nonce, is added to the matrix X (20) process with a round
function to generate a keystream. Our proposed fault injection
attack skips the corresponding addition ( add ) instruction to
obtain the matrix X or X (20) and extracts the key. General
countermeasures against instruction skipping, including random-
ization, duplication, and parity checking, are not suitable for the
software implementation of a stream cipher that requires high
performance and lightweight computation. We thus demonstrate
an algorithm-speci“c but extremely lightweight countermeasure
with less than 0.5% execution time overhead based on a variable
separation technique. Furthermore, we study the feasibility of the
countermeasure in the IA-32, Intel 64, and ARM architectures.

I. INTRODUCTION

Salsa20 [1] and ChaCha [2], [3] are stream ciphers designed

by Bernstein. These stream ciphers have the following fea-

tures: 1) the round function contains only addition, exclusive-

or, and fixed-distance rotations, 2) random access to a cipher-

text is possible by specifying an appropriate block number and

generating a 512-bit keystream.

Salsa20 is selected as a Profile I (for software implemen-

tation) in the eStream project, which is a standardization

project for stream ciphers in European countries. Nir and

Langley designed a sign-encryption ChaCha20-Poly1305[3]

by combining Poly1305 [4] as designed by Bernstein and

ChaCha with 20 rounds. ChaCha20-Poly1305 is used in

Google services and has been adopted by OpenSSH. TLS 1.3

is going to support ChaCha20-Poly1305.

This paper proposes a fault injection attack against software

implementation of stream ciphers Salsa20 and ChaCha. We

show a procedure to extract the key that skips the add
instruction in the key generation process and countermeasures

based on a variable separation technique. Furthermore, we

demonstrate an algorithm-specific but extremely lightweight

countermeasure with less than 0.5% execution time over-

head based on a variable separation technique. A software

implementation of a stream cipher is required to achieve

high performance and lightweight computation; and general

countermeasures against instruction skipping including ran-

domization, duplication (dual/triple modular redundant), and

parity checking may not be applicable. Then, we study the

feasibility of a variable separation countermeasure in the IA-

32 and Intel 64 and ARM architectures.

II. RELATED WORK

Boneh et al. [5] proposed a theoretical model to break

cryptographic schemes by taking advantage of random hard-

ware faults. They demonstrated that their attack applies to

implementations of RSA and Rabin signatures. Biham and

Shamir [6] showed that secret key cryptosystems are vulnera-

ble to a fault injection attack. They proposed a different fault

model, one that can break DES by analyzing a small number

of ciphertexts. Blömer and Seifert [7] applied an optical fault

injection attack [8] and an implementation-dependent attack

including timing attack [9] to AES. Piret and Quisquater [10]

proposed a differential fault injection attack against SPN struc-

tures applicable to AES and KHAZAD. Chen and Yen [11]

proposed a differential fault attack on the AES key schedule.

Tunstall et al. [12] proposed a differential fault injection attack

on AES based on a single fault. Roche et al. [13] proposed

a combined differential fault injection and side-channel attack

on AES.

Fouque et al. [14] shows that fault injection attack can

be used to execute arbitrary code. A fault injection attack

based on instruction skipping used on the square and multiply

operation was proposed by Schmidt and Herbst [15]. Barenghi

et al. [16] proposed an attack using instructions against AES

and RSA. Bar-El et al. [17] and Trichina and Korkiyan [18]

demonstrated that instruction skipping can be brought about

a laser pulse. Dehbaoui et al. [19] and Morno et al. [20]

showed that instruction skipping can be brought about using an

electromagnetic pulse. Instruction skipping based on a glitchy

clock signal was proposed by Balasch et al. [21], Korak and

Hoefler [22], Endo et al. [23], and Yuce et al [24].

The first fault injection attacks against stream ciphers were

introduced by Hoch and Shamir [25], which described attacks

against LILI-128 and SOBER-t32 and RC4. Other stream

ciphers including SNOW 3G [26], Trivium [27], HC-128 [28],

Rabbit [29], [30], Sosemanuk [31], Mugi [32] and MICKEY

2.0 [33], [34] have been analyzed using fault injection attack.

III. ALGORITHM DESCRIPTION: SALSA20 AND CHACHA

We describe here the algorithms of Salsa20 and ChaCha.

ChaCha is a variant of Salsa20, and we show how it the differs
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from Salsa20.

A. Salsa20

The stream cipher Salsa20 operates on 32-bit words, takes as

input a 256-bit key K = ( k 0, k 1, k 2, k 3, k 4, k 5, k 6, k 7) or 128-

bit key K = ( k 0, k 1, k 2, k 3) and a 64-bit nonce N = ( n 0, n 1),

and produces a sequence of 512-bit keystream blocks. The C -

th block is the output of the Salsa20 function that takes as input

the key, the nonce, and a 64-bit block counter C = ( c 0, c 1)
corresponding to the integer i . This function acts on the 4 × 4
matrix of 32-bit words written as;

X =

�

�
�
�

x 0 x 1 x 2 x 3

x 4 x 5 x 6 x 7

x 8 x 9 x 10 x 11

x 12 x 13 x 14 x 15

�

�
�
�

=

�

�
�
�

� 0 k 0 k 1 k 2

k 3 � 1 n 0 n 1

c 0 c 1 � 2 k 0

k 1 k 2 k 3 � 3

�

�
�
� (for a 256-bit key)

or

�

�
�
�

� 0 k 0 k 1 k 2

k 3 � 1 n 0 n 1

c 0 c 1 � 2 k 4

k 5 k 6 k 7 � 3

�

�
�
� (for a 128-bit key)

dependent on the key length, where � and � are constants

such that � 0 = 0x61707865, � 1 = 0x3320646E, � 2 =
0x79622D32, � 3 = 0x6B206574, � 0 = 0x61707865, � 1 =
0x3120646E, � 2 = 0x79622D36, and � 3 = 0x6B206574.

The keystream block Z is defined as; Z = X + X (20) , where

X ( r ) = Roundr ( X ) is the round function of Salsa20 and +

is word-wise addition modulo 232. If Z = X + X ( r ) , it is

called “r -round Salsa20” or “Salsa20/r ”. The round function

consists of the following nonlinear functions that are called

quarter-round functions. A vector ( a, b, c, d ) of four words is

transformed as;

b � b � (( a + d ) � 7)

c � c � (( b + a ) � 9)

d � d � (( c + b ) � 13)

a � a � (( d + c ) � 18).

The quarter-round functions are applied to columns

( x 0, x 4, x 8, x 12), ( x 5, x 9, x 13, x 1), ( x 10, x 14, x 2, x 6) and

( x 15, x 3, x 7, x 11) in odd rounds, and rows ( x 0, x 1, x 2, x 3),

( x 5, x 6, x 7, x 4), ( x 10, x 11, x 8, x 9) and ( x 15, x 12, x 13, x 14) in

even rounds. Algorithm 1 describes the complete procedure

of Salsa20.

B. ChaCha

ChaCha is similar to Salsa20 except for the following three

modifications;

Algorithm 1 Salsa20

Require: Key K , Block Counter C and Nonce N
Ensure: Keystream Z

X � InitialMatrix( K, C, N )
Y � X
for i = 0 upto 9 do

/ * Column Round * /
( x 0, x 4, x 8, x 12) � QuarterRound( x 0, x 4, x 8, x 12)
( x 5, x 9, x 13, x 1) � QuarterRound( x 5, x 9, x 13, x 1)
( x 10, x 14, x 2, x 6) � QuarterRound( x 10, x 14, x 2, x 6)
( x 15, x 3, x 7, x 11) � QuarterRound( x 15, x 3, x 7, x 11)
/ * Row Round * /
( x 0, x 1, x 2, x 3) � QuarterRound( x 0, x 1, x 2, x 3)
( x 5, x 6, x 7, x 4) � QuarterRound( x 5, x 6, x 7, x 4)
( x 10, x 11, x 8, x 9) � QuarterRound( x 10, x 11, x 8, x 9)
( x 15, x 12, x 13, x 14) � QuarterRound( x 15, x 12, x 13, x 14)

end for
Z � X + Y
return Z

1) The composition of the four quarter-round functions are

defined as below;

a � a + b

d � d � a

d � d � 16

c � c + d

b � b � c

b � b � 12

a � a + b

d � d � a

d � d � 8

c � c + d

b � b � c

b � b � 7.

2) The composition of the initial matrix defined as below1;

X =

�

�
�
�

� 0 � 1 � 2 � 3

k 0 k 1 k 2 k 3

k 0 k 1 k 2 k 3

n 0 n 1 c 0 c 1

�

�
�
� (for a 256-bit key)

or

�

�
�
�

� 0 � 1 � 2 � 3

k 0 k 1 k 2 k 3

k 4 k 5 k 6 k 7

v 0 v 1 i 0 i 1

�

�
�
� (for a 128-bit key).

3) The quarter-round functions are applied to the columns

( x 0, x 4, x 8, x 12), ( x 5, x 9, x 13, x 1), ( x 10, x 14, x 2, x 6)
and ( x 15, x 3, x 7, x 11) in odd rounds, and diagonals

1The IETF version [3] of ChaCha takes a 32-bit block counter C = ( c0)
and 96-bit nonce N = ( n0, n1, n2) , and x12 = c0 , x13 = n0 , x14 = n1 ,
x15 = n2 . Furthermore, a 128-bit key is out of scope in the IETF version.
However, this difference does not affect our proposed attack.
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Algorithm 2 ChaCha

Require: Key K , Block CounterC , and NonceN
Ensure: KeystreamZ

X � InitialMatrix( K, C, N )
Y � X
for i � 0 to 9 do

/ * Column Round * /
( x 0, x 4, x 8, x 12) � QuarterRound( x 0, x 4, x 8, x 12)
( x 1, x 5, x 9, x 13) � QuarterRound( x 1, x 5, x 9, x 13)
( x 2, x 6, x 10, x 14) � QuarterRound( x 2, x 6, x 10, x 14)
( x 3, x 7, x 11, x 15) � QuarterRound( x 3, x 7, x 11, x 15)
/ * Diagonal Round * /
( x 0, x 5, x 10, x 15) � QuarterRound( x 0, x 5, x 10, x 15)
( x 1, x 6, x 11, x 12) � QuarterRound( x 1, x 6, x 11, x 12)
( x 2, x 7, x 8, x 13) � QuarterRound( x 2, x 7, x 8, x 13)
( x 3, x 4, x 9, x 14) � QuarterRound( x 3, x 4, x 9, x 14)

end for

Z � X + Y
return Z

Algorithm 3 Implementation 1 of ChaCha

Require: Key K , CounterC , and NonceN
Ensure: KeystreamZ

X � Initial Matrix( K, C, N )
Z � X
X � X (20)

for i � 0 to 15 do

z i � z i + x i

end for

return Z

( x 0, x 5, x 10, x 15), ( x 1, x 6, x 11, x 12), ( x 2, x 7, x 8, x 13)
and ( x 3, x 4, x 9, x 14) in even rounds.

Algorithm 2 describes the complete procedure of ChaCha.

IV. P ROPOSED A TTACK

The key streams of Salsa20 and ChaCha are calculated
as the summation of the initial matrixX and the matrix
X (20) processed by the round function. Our proposed fault
injection attack makes Salsa20 and ChaCha output the words
of the matrixX or X (20) depending on their implementations.
Algorithm 3 and 4 shows the implementations of Salsa20
and ChaCha. An adversary can obtain the elements of the
initial matrixX or the matrixX (20) processed by the round
function by skipping the add instruction of the “rst or second
implementation, respectively. The adversary can extract the
key from both X and X (20) since the round functions of
Salsa20 and ChaCha are invertible.

A. Invertibility of Round Function

The quarter-round functions of Salsa20 and ChaCha contain
only additions, exclusive-or, and constant-distance rotations.

Algorithm 4 Implementation 2 of ChaCha

Require: Key K , CounterC , and NonceN
Ensure: KeystreamZ

X � Initial Matrix( K, C, N )
Z � X (20)

for i � 0 to 15 do

z i � z i + x i

end for

return Z

These basic operations can be described as follows,

add : ( x, y ) �� ( x + y, y ),

xor : ( x, y ) �� ( x � y, y ),

rotl ( n ) : x �� x � n,

and they are invertible,

addŠ 1 = sub : ( x, y ) �� ( x Š y, y ),

xorŠ 1 = xor : ( x, y ) �� ( x � y, y ),

rotl ( n )Š 1 = rotr ( n ) : x �� x � n.

The quarter-round functions of Salsa20 and ChaCha are thus
invertible. The inverse quarter-round function of Salsa20 is
given as,

a � a � (( c + d ) � 18)

d � d � (( b + c ) � 13)

c � c � (( a + b ) � 9)

b � b � (( a + d ) � 7),

and that of ChaCha is given as,

b � b � 7

b � b � c

c � c Š d

d � d � 8

d � d � a

a � a Š b

b � b � 12

b � b � c

c � c Š d

d � d � 16

d � d � a

a � a Š b.

The roundfunction of ChaCha consists of four quarter-round
functions and distinct 4-tuples of words are processed with
the quarter-round functions. Thus, the round function is also
invertible. There is no entropy loss in the process of the round
function.

Note that the entire key-generation process is not necessarily
invertible. The keystreamZ is calculated asX + X (20) and
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an irreversible addition irradd : ( x, y ) �� x + y that has two

inputs and one output.

B. Attack Procedure

Here we show the procedure for the fault injection attack

on the software implementation of Salsa20 and ChaCha. Our

proposed attack assumes that the key is fixed and an adversary

can generate the keystream any number of times in the target

implementation. The adversary does not have to select the

block number or nonce arbitrarily; however, one can repeatedly

generate a keystream with the same block counter and nonce.

For example, our proposed attack applies to a decryption

module for digital right management (DRM) in which a fixed

key is embedded in the module using tamper-proof techniques.

Step 1 Skip one of the add instructions that add words of

the initial matrix X and the matrix processed by the

round-function X (20) . The value of one word in the

keystream changes if one of the add instructions is

correctly skipped; then, store the word. The step fails if

multiple values of words in the keystream change, i.e.,

if multiple instructions or some instructions in round

functions are skipped.

Step 2 Repeat Step 1 until obtaining the changed values of all

of the word in the keystream.

Step 3 Generate a matrix from the words obtained in Step 1.

The matrix is ether X or X (20) . We can distinguish the

matrix by checking orthogonal words x 0, x 5, x 10, and

x 15 for Salsa20 and horizontal words x 0, x 1, x 2 and

x 3 for ChaCha. If the matrix is X then go to Step 5;

otherwise, the matrix is X (20) and go to Step 4.

The matrix is X if these words are respectively identical

� 0, � 1, � 2, and � 3 (for a 256-bit key); or � 0, � 1, � 2,

and � 3 (for a 128-bit key).

Step 4 Calculate X from X (20) using the inverse round func-

tion.

Step 5 Extract the key from the words contained in X . The key

is stored in words x 1, x 2, x 3, x 4, x 11, x 12, x 13, x 14 in

Salsa20; and x 4, x 5, x 6, x 7, x 8, x 9, x 10, x 11 in ChaCha.

V. COUNTERMEASURE

Randomization, duplication, and error detecting codes are

known as general countermeasures against instruction skip-

ping [35], [16], but these impose performance overhead on the

implementation. A software implementation of a stream cipher

is required to achieve high performance and lightweight com-

putation. Thus, we propose an algorithm-specific but extremely

lightweight countermeasure based on the variable separation

technique.

A countermeasure against this sort of attacks is to separate

variables; that is, distinct variables store the inputs and output

of the addition. Consider an addition z � x + y . The addition

returns the initial value of variable z even if the addition

is skipped. Thus, an adversary can get the value of neither

variable x nor y . Algorithm 5 shows the implementation using

countermeasure based on variable separation.

Algorithm 5 Countermeasure for fault injection attacks

Require: Key K , Counter C , and Nonce N
Ensure: Keystream Z

X � Initial Matrix(K, C, N )
Y � X (20)

for i � 0 to 15 do
z i � x i + yi

end for
return Z

int add(int x, int y){
int z;
z = x + y;
return z;

}

Fig. 1. Variable separation at source-code level

We should note that variable separation at a source-code

level does not work in actual practice.

A. IA-32 and Intel 64 Architectures

The IA-32 and Intel 64 CPUs are mainly used in computers,

workstations, servers and supercomputer that require high

computational capability. Figure 1 show the source-code of

add function; and, Figure 2 and 3 are the assembly code for

the IA-32 and Intel 64 architectures, respectively, compiled

from the source-code. In the original source-code, the inputs

are stored in the variables x , and y and the output is stored

in the variable z ; they are separated. On the other hand, the

addition z = x + y is translated to addl %edx, %eax
in the assembly code, which means that the addition result of

the values in the registers eax and edx is stored in the register

eax . The second input is stored into the eax in the assembly

code in Fig. 3 and 2; thus, the adversary can get the second

input by skipping the add instruction. Note that the IA-32 and

Intel 64 architectures support only two-operand instruction for

addition; thus, we cannot use the variable separation method

essentially. However, the IA-32 and Intel 64 architectures have

a complicated structure, and Ivy Bridge microarchitecture has

up to 19 stage instruction pipeline. Thus, it is difficult to skip

add:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl 8(%ebp), %edx
movl 12(%ebp), %eax
addl %edx, %eax
leave
ret

Fig. 2. Assembly code for IA-32 architecture
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add:

pushq %rbp

movq %rsp, %rbp

movl %edi, -20(%rbp)

movl %esi, -24(%rbp)

movl -20(%rbp), %edx

movl -24(%rbp), %eax

addl %edx, %eax

popq %rbp

ret

Fig. 3. Assembly code for Intel 64 architectures

add:

mov r2, r0

add r0, r1, r2

bx lr

Fig. 4. Assembly code for ARM architectures

a speci“c instruction in actual CPUs with the IA-32 and Intel
64 architectures.

B. ARM Architectures

The ARM architectures target resource-constrained devices
including those in the IoT. Thus, the ARM has simpler RISC
architecture compared to the IA-32 and Intel 64 architectures.
The ARM Cortex-M0, M3, and M4 processors have a three-
stage instruction pipeline, and the Coretex-M0+ has a two-
stage pipeline. Yuce et al. [24] proposed an instruction skip-
ping based on a glitchy clock signal for an RISC-based CPU
with a seven-stage instruction pipeline. Accordingly, we must
protect the implementation on ARM architectures against fault
injection attacks.
The ARM architectures support three-operand instruction

such asadd r0, r1, r2 , which means that the addition
result of the values in the registersr1 and r2 is stored in
the registerr0 . Figure 4 shows the assembly code where
the countermeasure is used. Note that a compiler may output
code includingadd r0, r1 or add r0, r0, r1 for
input codez = x + y where input and output variables are
sepereated. We thus need to use assembly or inline-assembly
implementation to use the three-operand instruction explicitly.
Figure 5 shows the implementation of secure addition based
on the variable separation countermeasure using GCC inline
assembly.

C. Execution Time Overhead

We evaluate the execution overhead of our countermea-
sure using actual implementation of ChaCha. Google pro-
vides BoringSSL [36] that is a lightweight version of
OpenSSL [37], and it contains the implementation of ChaCha.
The chacha_core in chacha.c is the main function of
ChaCha, which takes the initial matrix as an input and outputs
the keystream. The assembly code of thechacha_core has

int add(int x, int y){

int z;

asm volatile(

"add %[s], %[t], %[u];"

: [s] "=r" (z)

: [t] "r" (x), [u] "r" (y)

:

);

return z;

}

Fig. 5. Implementation of Addition using GCC Inline Assembly

TABLE I
EXECUTION TIME OVERHEAD OF COUNTERMEASURES

Countermeasure Num. of Instructions Overhead [%]
Dual Modular Redundant 64 1.92

Triple Modular Redundunt 224 6.73
Parity 320 9.62

Parity-Barrel 208 6.25
Variable Separation (Proposed) 16 0.48

3,327 instructions as inlining the loops in the code. We use
a cross-compilerarm-linux-gnueabihf-gcc on Ubuntu
16.10 with an Intel 64 CPU and an option-S to obtain the
assembly code. The assembly code contains an instruction
add r2, r2, r3 to add a word of the initial matrixX
and that of the matrixX (20) . We replace the instruction with
the instructions

add r4, r2, r3

mov r2, r4

to sperate the input and output variables. The program executes
the additionalmov instruction 16-times. We can evaluate the
execution time overhead of our countermeasure is 16/3,327
= 0.0048 and less than 0.5% assuming that every instruction
completes in one clock cycle. Note that the real overhead is
even smaller than 0.5% since the some instructions including
ldr andstr require more than one clock cycles to complete
while mov completes in one clock cycle.
Table I compares the number of additional instruction and

execution time overheads of the existing [35] and our proposed
countermeasures, assuming that these countermeasures apply
to the 16add instructions. Our countermeasure can achieve
the least execution time overhead.

VI. CONCLUSION

We have proposed a fault injection attack against software
implementation of Salsa20 and ChaCha. The attack can extract
the key from the initial matrix of Salsa20 or ChaCha by
skipping anadd instruction. We also proposed a lightweight
countermeasure with less than 0.5% execution time overhead
based on the variable separation technique that makes distinct
variables store the inputs and output of the addition step. The
IA-32 and Intel 64 architectures support only two-operand
add instructions, and the variable separation countermeasure
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is not available in the actual software. However, these architec-

tures have a multi-stage instruction pipeline with more than ten

stages. Thus, our proposed attack is hard to apply to Salsa20

or ChaCha. On the other hand, the ARM architectures have

an instruction pipeline with fewer stages, and some published

studies report that the instruction skipping is possible. Three-

operand instruction is available in the ARM architectures, and

we can use a variable separation countermeasure.

Our future research will explore the possibility of a fault

injection attack that targets the generation and assignment of

the initial matrix X and the matrix X(20), and attack in which

an adversary can arbitrarily select the block counter and nonce.
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