®

Check for
updates

Improved Differential-Linear Attacks
with Applications to ARX Ciphers

Christof Beierle!, Gregor Leander!, and Yosuke Todo'2(®)

! Ruhr University Bochum, Bochum, Germany
{christof.beierle,gregor.leander}@rub.de
2 NTT Secure Platform Laboratories, Tokyo, Japan
yosuke.todo.xt@hco.ntt.co.jp

Abstract. We present several improvements to the framework of
differential-linear attacks with a special focus on ARX ciphers. As ademon-
stration of their impact, we apply them to Chaskey and ChaCha and we
are able to significantly improve upon the best attacks published so far.

Keywords: Symmetric cryptanalysis + ARX - Chaskey + ChaCha

1 Introduction

Symmetric cryptographic primitives play major roles in virtually any crypto-
graphic scheme and any security-related application. The main reason for this
massive deployment of symmetric primitives, i.e. (tweakable) block ciphers,
stream ciphers, hash functions, or cryptographic permutations, is their signif-
icant performance advantage. Symmetric primitives usually outperform other
cryptographic schemes by order(s) of magnitude.

One class of design of symmetric primitives that is inherently motivated by
(software) efficiency is an ARX-based design. ARX is short for addition (mod-
ulo a power of two), word-wise rotation and XOR. Indeed, ciphers following
this framework are composed of those operations and avoid the computation of
smaller S-boxes through look-up tables. As most CPUs have hardware support
for all those operations, in particular an addition unit and a barrel shifter imple-
mented directly in hardware, executing them on such CPUs based on a suitable
register size is inherently fast.

The block cipher FEAL [27] was probably the first ARX cipher presented in
the literature and by now there are several state-of-the-art ciphers that follow
this approach. One of the most important (family) of ARX ciphers is certainly
the one formed by Salsa20, ChaCha and their variants (see [6,7]). Designed by
Bernstein, those ciphers are now the default replacement for RC4 in TLS due
to the high efficiency and simplicity of their implementations and are thus one
of the most widely-used ciphers in practice. Besides being used in TLS, ChaCha
is also deployed in several other products and in particular used as a building
block in the popular hash functions Blake and Blake2 [2,3].
© International Association for Cryptologic Research 2020

D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 329-358, 2020.
https://doi.org/10.1007/978-3-030-56877-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_12

330 C. Beierle et al.

Clearly, the ARX-based design approach is not restricted to only stream-
ciphers, but also allows the design of efficient block ciphers (e.g., Sparx [15]),
cryptographic permutations (e.g., Sparkle [5]), and message authentication codes
(MACs). For the latter, Chaskey [24] is among the most prominent examples.

Besides the advantage of having efficient implementations, there are also
good reasons for ARX-based designs when it comes to security. The algebraic
degree of ARX ciphers is usually high after only a very few rounds, as the
carry bit within one modular addition already reaches almost maximal degree.
Structural attacks like integral [18] or invariant attacks [28] are less of a concern
and rotational cryptanalysis [17], originally invented for ARX ciphers, is in most
cases very efficiently prevented by the XOR of constants.

When it comes to differential [9] and linear attacks [23], ARX-based designs
often show a peculiar behaviour. For a small number of rounds, i.e., only very
few modular additions, the differential probabilities (resp., absolute linear cor-
relations) are very high. In particular for a single modular addition, those are
equal to 1 due to the linear behaviour of the most and least significant bits.
Moreover, for a single modular addition, the differential probabilities and linear
correlations are well understood and we have at hand nice and efficient formulas
for their computation [21,29]. In the case of (dependent) chains of modular addi-
tions and XORs, the situation is different and often checking the probabilities
experimentally is the best way to evaluate the behaviour.

Thus, while a few rounds are very weak, for a well-crafted ARX scheme, the
probabilities of differentials and the absolute correlations of linear approxima-
tions decrease very quickly with increasing the number of rounds. Indeed, this
property led to the long-trail strategy for designing ARX-based ciphers [15].

Now, for symmetric primitives, the existence of strong differentials and lin-
ear approximations for a few rounds with a rapid decrease of probabilities (resp.
absolute correlations) is exactly the situation in which considering differential-
linear attacks [19] is promising. In a nutshell, differential-linear attacks combine
a differential with probability p for the first » rounds of the cipher and a linear
approximation with correlation ¢ for the next ¢ rounds into a linear approxima-
tion for r +¢ rounds with correlation pg? that can be turned into an attack with
data complexity of roughly p~2¢—%.

Indeed, that said, it is not surprising that the best attacks against many ARX
constructions, including ChaCha and Chaskey, are differential-linear attacks [11,
14,20]. Our work builds upon those ideas and improves differential-linear attacks
on ARX ciphers along several dimensions.

1.1 Owur Contribution

In this paper we present the best known attacks on ChaCha and Chaskey. Our
improvements over prior work are based on improvements in the differential, as
well as the linear part and the key-recovery part of differential-linear attacks.

Differential Part. For the differential part, our observation is both simple and
effective. Recall that for a differential-linear attack, one needs many (roughly
q~*) pairs to fulfill the difference in the first part of the cipher, that is many

Improved Differential-Linear Attacks with Applications to ARX Ciphers 331

Table 1. (Partial) Key-Recovery Attacks on Chaskey and ChaCha.

Key size | Rounds | Time |Data | Ref

Chaskey | 128 6 2286 1925 | [9(]
7 267 2481120

25121 [940-21 | Gection 5.3
ChaCha | 256 6 2139 1230]

2136 228 [26}
9116 gl (1]
2774 1958 | GQection 6.3

7 2248 227 [1]
2246.5 227 [26}
2238.9 296 [22}
2237.7 296 [1 1}
2235.22 o [14}

9230.86 | 948.83 | Goction 6.4

right pairs for the differential. Now, imagine that an attacker could construct
many right pairs with probability (close to) one, given only a single right pair.
This would immediately reduce the data complexity of the attack by a factor
of p~t. As we will see, this situation is rather likely to occur for a few rounds
of many ARX ciphers and in particular occurs for ChaCha and Chaskey. The
details of those improvements are presented in Sect. 3.

Linear Part. For the linear part, our first observation is that often it is beneficial
to not restrict to a single mask but rather consider multiple linear approxima-
tions. As we detail in Sect. 4, this nicely combines with an improved version of
the partitioning technique for ARX ciphers [8,20], that splits the space of cipher-
texts into subsets in order to increase the correlation of linear approximations.
The starting point of our attacks is a new way of partitioning the ciphertexts,
summarized in Lemma 3. Note that, although we use multiple linear masks in
the attack, because of partitioning the ciphertexts, we use only a single linear
mask for each ciphertezt. In this way we avoid possible dependencies that would
be hard to analyze otherwise.

Key Recovery. Related to the improvement in the linear part, we present a sig-
nificant speed-up in the key recovery part. Here, the main observation is that
after considering multiple masks and the partitioning technique, several key bits
actually appear only linearly in the approximations. In particular, their value
does not affect the absolute value of the correlation but rather the sign only.
This observation allows us to, instead of guessing those keys as done in pre-
vious attacks, recover them by applying the Fast Walsh-Hadamard Transform
(FWHT). Similar ideas have already been described in [12]. Details of this app-
roach are given in Sect. 4.

332 C. Beierle et al.

Putting those improvements into one framework and applying the frame-
work to round-reduced variants of ChaCha and Chaskey results in significantly
reduced attack complexities. Our attacks with the corresponding complexities
are summarized in Table 1, together with a comparison to the best attacks pub-
lished so far.! In particular for ChaCha it is important to add that, as those
attacks are on round-reduced variants of the ciphers only, they do not pose any
threat on the full-round version of the ciphers. Rather, those attacks strengthen
our trust in the design. We expect that our improvements have applications to
other ciphers as well, especially ARX-based designs.

2 Preliminaries

By @ we denote the XOR operation, i.e., addition in F} and by + we either
denote the addition in Z, or the modular addition mod 2" for elements in F,
depending on the context. For z € I}, we denote by Z the bitwise complement
of x. Given a set § C Fy and a Boolean function f: F5 — Iy, we define

Corges [f(z)]:= \S| Z f(”“').
zeS

We denote the i-th unit vector of a binary vector space by [i] and the sum of
unit vectors [i1] @ [iz] @ -+ ® [it] by [i1,42,...,%]. Given a vector z € Fy, z[i]
denotes the i-th bit of z, and z[i1,i2,. .., 7] denotes @;:1 x[i;]. For v,z € F3,
we define the inner product by (y,z) = @?;01 ~[i]x[i]] mod 2. In particular,
x[il,ig, ce ,it] = <l‘, [il,ig, ce ,it]>.

In the remainder of this paper we assume that, when & C F} is a (sufficiently
large) subset of F% of random samples, Cor,cs [f(z)] is a good approximation
for Coryery [f(z)]. In other words, we assume that the empirical correlations
obtained by sampling for a sufficiently large number of messages closely match
the actual correlations.

We denote by N(u,0?) the normal distribution with mean u and variance
o2. By @ we denote the cumulative distribution function of the standard normal
distribution NV(0, 1). Thus if X ~ N (i, 0?), it holds that

Pr(Xge)—ng(@_“).

ag

2.1 Differential-Linear Attacks

We first recall the basic variant of differential-linear cryptanalysis as intro-
duced by Langford and Hellman [19]. Figure 1 shows the overview of the distin-
guisher. An entire cipher F is divided into two sub ciphers E; and FEs, such that

! After the submission of this paper, the authors of [13] independently found the same
distinguisher without applying the technique for improving over the differential part,
and the presented attack complexities are very close to ours.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 333

i o Bin i i Bin . i

E 1 E 1 T A ._

i Fm Fm i

Fo| |4 q) | Eo

b Tou T Trne 1ol

Fig.1. The structure of a classical Fig. 2. A (differential-linear distin-
differential-linear distinguisher. guisher with experimental evaluation of
the correlation r.

E = E5oF4, and a differential distinguisher and a linear distinguisher are applied
to the first and second parts, respectively.

In particular, assume that the differential A;, By A,, holds with probability

Pricry [E1(z) ® Ei(z ® Ain) = An] = p.

Let us further assume that the linear approximation I, =y but 18 satisfied
with correlation Corgery [(I'm,) ® (Lout, B2(x))] = ¢. The differential-linear
distinguisher exploits the fact that, under the assumption that E;(x) and E(x)
are independent random variables, we have

COI‘:CE]FS [(Lout, E(2)) © (Tout, E(x © Ain))] = pq2- (1)

Therefore, by preparing ep~2¢~* pairs of chosen plaintexts (z,7), for = z @
Aipn, where € € N is a small constant, one can distinguish the cipher from a PRP.

In practice, there might be a problem with the assumption that F;(z) and
E(x) are independent, resulting in wrong estimates for the correlation. To pro-
vide a better justification of this independence assumption (and in order to
improve attack complexities) , adding a middle part is a simple solution and
usually done in recent attacks (as well as in ours). Here, the cipher E is divided
into three sub ciphers Fi, FE,, and F5 such that £ = E5 o F,, o F; and the
middle part F,, is experimentally evaluated. In particular, let

r=Corges (I, Em(x)) ® (Iim, Em(z ® An))],

where S denotes the set of samples over which the correlation is computed. Then,
the total correlation in Eq. 1 can be estimated as prq?. Recently, as a theoretical

334 C. Beierle et al.

support for this approach the Differential-Linear Connectivity Table (DLCT) [4]
has been introduced. The overall attack framework is depicted in Fig.2 and we
will use this description in the remainder of the paper.

2.2 Partitioning Technique for ARX-Based Designs

Partitioning allows to increase the correlation of the differential-linear distin-
guisher by deriving linear equations that hold conditioned on ciphertext and key
bits. We first recall the partitioning technique as used in [20]. Let a,b € F3
and let s = a +b. When ¢ = 0 (Isb), the modular addition for bit ¢ becomes
linear, i.e., s[0] = a[0] @ b[0]. Of course, for i > 0, computing the i-th output bit
of modular addition is not linear. Still, by restricting (a,b) to be in a specific
subset, we might obtain other linear relations. In previous work, the following
formula on s[i] was derived.

Lemma 1 ([20]). Let a,b € F5 and s =a+b. Fori > 2, we have

il {a[i] Sb[i] ®ali —1] if afi — 1] = bli — 1]
ali) ®bli| ®ali — 2] if a[i — 1] # bli — 1] and ali — 2] = b[i — 2].

Let us now consider two m-bit words zy and z; and a modular addition
operation

F:]F%m — IFS’”, (21,20) = (y1,Y0) = (21,20 + 21),

as depicted in Fig.5. F' might correspond to a single branch of a wider ARX-
based design. In the attacks we present later, we are interested in the value zg[i].
For this, we cannot apply Lemma1 directly since zg[i] is obtained by modular
subtraction. However, for that case the following formula can be derived.

Lemma 2. Let i > 2 and let Sy:={(z1,20) € F3™ | 2o[i — 1] # x1[i — 1]} and
So:={(x1,70) € F3™ | xo[i — 1] = x1[i — 1] and xo[i — 2] # x1[i — 2]}. Then,

(2)

2oli] = {yom Syl ©yoli —1 @1 if (y1,%) € S1,

yolt] ®yald) @yoli — 2] @1 if (y1,90) € Sa.

Clearly, 81 and Sy are disjoint sets. Note that Eq. 2 only holds for % of the data,
since |81 = 27122 and |S,| = 2722%™,

Due to the propagation rules for linear trails over modular addition, we may
end up with multiple linear trails that are closely related to each other. As
an example, Fig.3 shows two possible trails, where [i] and [i — 1,¢] denote the
corresponding linear masks. The partitioning technique described above evalu-
ates zg[i], but we can expect that there is a highly-biased linear trail in which
zo[i — 1] @ zo[i] needs to be evaluated instead of z[i]. In the trivial method, we
apply the partitioning technique of Lemma?2 for zg[i] and zo[i — 1] separately,
which requires the knowledge of 3 bits of information from y in total. Our new

Improved Differential-Linear Attacks with Applications to ARX Ciphers 335

Eﬂ k———*Eﬂ

Fig. 3. Two linear trails with correlation 271,

partitioning method allows us to determine the partition only by knowing the
same 2 bits of information as needed for evaluating the case of zy[i], namely
(yo[t = 1) @ y1[i — 1]) and (yo[i — 2] @ y1[¢ — 2]). This is especially helpful if y
consists of the ciphertext XORed with the key, so we need to guess less key bits
to evaluate the partition. In particular, the following relation holds, which is
straightforward to proof. The intuition is that zg[¢ — 1] corresponds to the carry
bit c[i — 1] in the case of (y1,y0) € Sz and (y1[i — 2], y1[i —1]) = (c[i — 2], ¢[i —1])
for (y1,v0) € Sq4.

Lemma 3. Let i > 2 and let S3 = {(x1,20) € F3™ | 2o[i — 1] = 21[i — 1]} and
Sy = {(w1,20) € F3™ | wg[i — 1] # 21[i — 1] and xo[i — 2] # x1[i — 2]}. Then,

i @ zofi — 1] = 4 Yol @) if (y1,50) € S,
yolil ® i) ® yoli — 1 @ yoli — 2] ® 1 if (y1,90) € Sa.

Again, §3 and S, are disjoint and the equation above holds for % of the data.

3 The Differential Part — Finding Many Right Pairs

Let us be given a permutation Ej: F§ — F3 and a differential A;, By A,, that
holds with probability p. In other words,

|{.’I} S]Fg’ ‘ El(.’L’) @El(.’L’@ Ain) = Am}| =p- A

In a usual differential-linear attack on a permutation £ = E5 o E,, o E; as
explained in Sect. 2.1, the internal structure of E; could be in general arbitrary
and we would consider randomly chosen z € F3 to observe the ciphertexts of
the plaintext pairs (x,z @ Aj,). For each of those pairs, the differential over
F; is fulfilled with probability p, which results in a data complexity of roughly
ep~2r—2¢* for the differential-linear attack. In other words, we did not exploit
the particular structure of Fy. In particular, it would be helpful to know some-
thing about the distribution of right pairs (z,z ® Ay,) € Fy x Fy that fulfill the
above differential.

Let us denote by X the set of all values that define right pairs for the differ-
ential, i.e.,

336 C. Beierle et al.

To amplify the correlation of a differential-linear distinguisher, instead of
choosing random plaintexts from F%, we would consider only those that are in
X. In particular, we have?

Coryex [(Fous, E(2)) ® (Tout, E(z © Ain))] = r¢*.

Since the set X might have a rather complicated structure, and is moreover
key-dependent, we cannot use this directly for an arbitrary permutation FE;.
However, if X employs a special structure such that, given one element = € X,
we can generate many other elements in X for free,® independently of the secret
key, we can use this to reduce the data complexity in a differential-linear attack.
For example, if X' contains a large affine subspace A = U ® a, given = € A,
we can generate (roughly) 2/9™¥| elements in & for free, namely all elements
T @ u, for u € U. In order to obtain an effective distinguisher, we must be able
to generate enough plaintext pairs to observe the correlation of the differential-
linear approximation. In particular, we need to require |U| > er=2¢=%.

This will be exactly the situation we find in ChaCha. Here the number of
rounds covered in the differential part is so small that it can be described by the
independent application of two functions (see Sect. 3.1).

If [U| is smaller than the threshold of er~2¢~?*, we can’t generate enough
right pairs for free to obtain a distinguisher by this method and we might use a
probabilistic approach, see Sect. 3.2.

3.1 Fully Independent Parts

Let Ey: F§ — F5 with n = 2m be a parallel application of two block ciphers
EW:Fp - FP, i € {0,1} (for a fixed key), i.e.,

By (@0,20) = BV @), B (20)).

(0)
Suppose that, E§O) employs a differential a a, [with probability p. We consider
the differential A;y, By A, with Ay, = (0,a) and A, = (0,3), which also holds
with probability p. Given one element (z(), 2(9) € X, any (z(V) @ u,2(?)) for
u € F7* is also contained in &', thus we can generate 2™ right pairs for free.

If 2™ > er—2¢~*, a differential-linear distinguisher on E = Ey o E,, o F;
would work as follows:

1. Choose a = (a™V,a(9) € F} uniformly at random.
2. Empirically compute

COI‘:I:Ea@(JFQ‘X{O}) [<F0tha E(Z‘)> & <F0uta E(l‘ ® Ain)>] :

2 Under the assumption that the sets {(Ious, E(z)) @ (Tout, E(x @ Ain)) | € X} and
{{Tout, E(2)) ® (Tous, E(x @ Ain)) | © € S} are indistinguishable, where S denotes a
set of uniformly chosen samples of the same size as X.

3 Or at least with a cost much lower than p~!, see Sect. 3.2.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 337
3. If we observe a correlation of r¢? using er~2¢~* many z, the distinguisher
succeeded. If not, start over with Step 1.

With probability p, we choose an element a € X in Step 1. In that case, the
distinguisher succeeds in Step 3. Therefore, the data complexity of the distin-
guisher is ep~'r~2¢™%, compared to ep~2r~2¢~* as in the classical differential-

linear attack.

3.2 Probabilistic Independent Parts

We are also interested in the situations in which the differential part cannot be
simply written as the parallel application of two functions. Again, the goal is,
given one element z € X, to be able to generate er—2¢—* other elements in X,
each one with a much lower cost than p~!. Suppose that & C F} is a subspace
with [U| > er~2¢~* and suppose that Prycy(r@u € X | v € X) = p1, where p;
is much larger than p. The data complexity of the improved differential-linear
distinguisher would then be ep_lpf2r_2q_4. Note that the probability p; also
depend on z. In particular, there might be 2z € X’ C X" for which p; is (almost)
1, but the probability to draw such an initial element z from FJ is p’, which
is smaller than p. Then, the data complexity would be ep’~'p;?r~2¢=%. For
instance, this will be the case for the attack on Chaskey (Sect. 5), where we have
p1 ~ 1 and p’ = p x 222/256.

In such situations, we propose an algorithmic way to experimentally detect
suitable structures in the set of right pairs. This idea of the algorithm, see Algo-
rithm 1 for the pseudo code, is to detect canonical basis vectors within the sub-
space Y. Running this algorithm for enough samples will return estimates of the
probability «; that a right pair x € X stays a right pair when the j-th bit is
flipped, i.e.,

v =Pr(z@ile X |zeX).

When applied to a few rounds of ARX ciphers it can be expected that there
are some bits that will always turn a right pair into a right pair, i.e. v, = 1.
Moreover, due to the property of the modular addition that the influence of bits
on distant bits degrades quickly, high values of v; # 1 can also be expected. As
we will detail in Sect. 5 this will be the case for the application to Chaskey.

4 The Linear Part — Advanced Partitioning
and WHT-based Key-Recovery

In this section, we describe our improvements over the linear part of the attack
which consists in exploiting multiple linear approximations and an advanced
key-recovery technique using the partitioning technique and the fast Walsh-
Hadamard transform. The overall structure of the advanced differential-linear
attack is depicted in Fig.4. Here F corresponds to the part of the cipher that
we are going to cover using our improved key-guessing. Our aim is to recover
parts of the last whitening key k by using a differential-linear distinguisher given

338 C. Beierle et al.

Algorithm 1. Computing probabilistic independent bits

Require: Number of samples T, input difference A;,, output difference A,,
Ensure: Probabilities vo,v1,. .., Yn-1

1: Let s=0and ¢; =0 for j € {0,...,n —1}.

2: fori=1to T do

3 Pick a random X and compute E1(X) and E1(X @ A;y)
4 if El(X)) El(X) Azn) = A,, then

5: Increment s
6
7
8

for j €{0,...,n—1} do
Prepare X where the j-th bit of X is flipped.
if E1 (X) D E1 (X D Ain) = Am then

9: Increment c;
10: end if

11: end for

12: end if

13: end for

14: for j € {0,...,n— 1} do
15: Vi =c¢j/s
16: end for

by s (multiple) linear approximations (Fo(ﬁé), z) ® (F(Eﬁg), Z). In the following, we
assume that the ciphertext space FJ is split into a direct sum P & R with
np:=dimP and ng:= dim’R = n — np. Therefore, we can uniquely express
intermediate states z as zp @ zgr, where zp € P and zr € R. The precise

definition of P and R depends on the particular application of the attack.

4.1 Multiple Linear Approximations and Partitioning

The idea is to identify several tuples (’];“F(p"’),’y(pi)), i € {1,...,s}, where

out

T,, = R ®p; is a coset of R C Fy, I'P) € F2 and () € R, for which we can

out
observe a high absolute correlation

€= COI‘yETqu [<F(§111)E)7 Z> @ <,y(p1:), y>} ’

In the simplest case, we would have ¢; = 1, i.e.,
yeT, = (%2 =00y =¥, (.5).

In other words, by considering only a specific subset of the ciphertexts (defined
by 7,,) we obtain linear relations in the key with a high correlation.

Note that y € 7,, & c € T, ® kp, so we need to guess np bits of k to
partition the ciphertexts into the corresponding 7,,. Note that there might be
ciphertexts that are discarded,* i.e., there might be y which do not belong to

4 Of course, the discarded data has to be considered in the data complexity of the
attack.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 339

Ay .
' '
k;r&? GP“/ﬂn
E1 El
Ap
E, }exp. exp.< E,
L Lo
Ey)
(p)p(p2) ... (ps) (P)p(p2) ... plps)
= p@ag| LToulow " Lowt Toulow " Towr |3z 05,

Y =1yp DYr 7(p|)A’,(P2) . 7(1)5) A/(m)r\,’(l?z) ceaP) g = gp @ Jr
k= kp & kr—€® Dk =kp ®kr
c=cpPcer ¢ =CpDCr
Fig. 4. The general structure of the attack.
any 7, for ¢ € {1,...,s}. Note also that, since we require 7)€ R, we obtain

linear relations only on kx.
By defining®

qi,j = Cor xz€X such that |:<F0(€é), Z> S <Fo(§1]:)7 2>:| s
(¢,0)€Tp; xTp; ®(kp kp)

we obtain

Cor z€X such that [<'7(pi)7 C> @ <’Y(pj)7 E> D <7(pi) D '7(pj)7 k>}
(¢,0)€Ty; xTp; @ (kp,kp)

= Cor zE€X such that |:<'Y(p1)a y> D <7(pj)7 g>} = €i€j4ij-
(¢,8)€Tp, xTp,; & (kp kp)

0 ifr>0
For r € R, let us define sgn(r) = 1 "= If we define
1 ifr<o0

hi,j = (_1)Sgn(6it‘j’1i,j)cor 2€X such that |:<fy(pi)7 C> ® <,y(pj), é’>:| ,
(.9)€Ty; x Ty, B(kp kp)

5TIf |gi;| is not too small and if the number s of approximations is not too
huge, we can empirically compute g¢;; for all ¢,j. In other cases, we estimate
gi,; = Corgex [(Féﬁé), z) @ (Fcff:{), 2)} by assuming indistinguishability of the sets
(rj) = = (pj) 5
(L0 2) @ (I 2) | = € X st (0,9) € Ty x Ty, and (I3, 2) @ (1507, 2) |
x € 8}, where S is a set of uniformly random samples of X of suitable size.

340 C. Beierle et al.

we have h; j = (—1)<’7(pi)@'y(pj)’k>\eiejqi,ﬂ. Let us further assume that
{33 eXx | (Ca 6) € 7;71 X 7;71' & (kp,kp)}

is of equal size o for all (4, j) and consider the scaled version of h; ;, i.e.,

Qiji=0 - hij = (—1)%80(E0) Z (—1)" 808

zE€X such that
(c,6)€Tp, X’Z},j@(kp,k‘p)

For each v € W :=Span{y®) @ ~y®:) | i j € {1,...,s}}, we define

B(y) = > oy

(¢,7) such that

’Y(pi)GB’Y(Pj):’Y
This function 8 now allows to efficiently recover dim W bits of information on
kr. In other words, kx can be uniquely expressed as k; @ kr+, where k. is the
part of the key that can be obtained from 3. Finally, using the Fast Walsh-
Hadamard transform on (3, we compute for each tuple (kp,kr) a cumulative

counter
Clkp,ke) =Y (=1)F)5(5).
~yeW

Whenever this counter C is larger than some threshold ©, we store the tuple
(kp,kz) in the list of key candidates. Note that the idea of applying the Fast
Walsh-Hadamard transform to gain a speed-up in the key-recovery phase of
linear cryptanalysis has already been used before, see [12].

The attack is presented in Algorithm 2. Note that the actual correlations are
approximated by sampling over N pairs of plaintexts, resp., ciphertexts.

A Note on the Walsh-Hadamard Transform. Given a real-valued function
f:F5 — R, the Walsh-Hadamard transform evaluates the function

FiFy =R, am Y (1) f(y).

yely

A mnaive computation needs O(22") steps (additions and evaluations of f), i.e.,
for each a € F%, we compute (—1)¥ f(y) for each y € F%. The Fast Walsh-
Hadamard transform is a well-known recursive divide-and-conquer algorithm
that evaluates the Walsh-Hadamard transform in O(n2") steps. We refer to
e.g., [10, Section 2.2] for the details.

Running Time and Data Complexity of Algorithm 2. Clearly, Algorithm 2 needs
2N queries to F as the data complexity. For the running time, the dominant
part is the loop over the key guesses for kp, the collection of N data samples,
and the Walsh-Hadamard transform. The overall running time can be estimated
as 2"7 (2N + dim W - 2dim W),

Improved Differential-Linear Attacks with Applications to ARX Ciphers 341

Algorithm 2. Key-recovery
Require: Cipher E, sample size N, threshold 6.
Ensure: List of key candidates (k%, k) for np + dim W bit of information on k.
for (i,5) € {1,...,s} x{1,...,s} do
for k» € P do
a<f§”) —0
end for

1:
2
3
4
5: end for
6
7
8

: Choose a «— Fy

: for ¢ G {1,...,N} do

: t & U Da
9: (¢,) — (E(z), E(x & Ain))
10: for k» € P do

11: Identify 7; x 7T; for (¢ ® kp, & @ k) and get corresponding ??) and ~(Ps)
' ’ i) e (Pj) & .. R

12: aiz”) — ag,kf) + (—1)“@ V@0 ®).e (where ¢, j are computed in line 11)

13: end for

14: end for

15: for k% € P do
16: Compute C(k%, kz) using the Fast Walsh-Hadamard Transform
17: if C(kp,kz) > O then

18: Save (k, kc) as a key candidate
19: end if
20: end for

Success Probability of Algorithm 2. Two questions remain to be discussed here:

(i) what is the probability that the right key is among the candidates and (ii)

what is the expected size of the list of candidates? To answer those questions,

we have to first establish a statistical model for the counter values C(kp, k.).
For a key guess k., we first note that

Clhp, k) = Y (—1)Fe)3(y)

yeW
=> > (p= Fe) (—1)580(eie5ai5) > (—1)" 802
YEW (4,7) s. t. zE€X such that
2P @y (i) =y (¢,6)€Tp; xTp; ®(kp,kp)
— Z Z W kc 1)Sgn(€i€]’¢h,j) Z (71)(7(’”),y@kn)@(w(pj),g®kn>
YEW (i,5) s. t. zE€X such that

(pi)@'y(pj):fy (C,E)E'Z—pix'z;,j @(k‘p,kp)

Z Z —1){rke kL) (_1)S80 (e ai) Z (—1) " wme().9)

YEW (4,7) s. t. __TEX such that
(pi)@,y@j),w (c,c)ETpiprjea(kp,kp)

Yo > ()R eieiq4] -0,

yeW (i,7) s. t.
’Y(pi)@’y(pj)z’y

342 C. Beierle et al.

which implies that if k., = k. the partial counters add up, while if kz # k.,
the partial counters can be expected to cancel each other partially.

In the following, we assume that the distributions involved can be well esti-
mated by normal approximations. This significantly simplifies the analysis. Note
that we opted for a rather simple statistical model ignoring in particular the
effect of the wrong key distribution and the way we sample our plain-texts (i.e.
known vs. chosen vs. distinct plaintext). Those effects might have major impact
on the performance of attacks when the data complexity is close to the full code-
book and the success probability and the gain are limited. However, none of this
is the case for our parameters. In our concrete applications, we have verified the
behaviour experimentally wherever possible.

For the statistical model for the right key, this implies that the counter can
be expected to approximately follow a normal distribution with parameters

C(kp,ke) ~ N(N*h,N*)
where

1
h= 32 his
,]

is the average correlation over all partitions and N* is the effective data complex-
ity, i.e. the data complexity N reduced by the invalid partitions. The wrong key
counters (under the simple randomization hypothesis) is approximately normal
distributed with parameters

C(kp, k) ~ N(0,N").
With this we can deduce the following proposition.

Proposition 1. After running Algorithm 2 for p~!-times, the probability that
the correct key is among the key candidates is

1 1 ©—N*h
DPsuccess = 2 Pl"(c(kP> kﬁ) = @) B (1 0] (\/m))

co 27 e
The expected number of wrong keys is 5 X (1 - (W))

4.2 A Simple Toy Example

We transfer the above terminology on the simple toy example given in Fig. 5 and
already discussed earlier in Sect. 2.2. In this example, for a fixed ¢ > 2, we want
to evaluate zp[i] or zo[i] @ 2o[i — 1] by using the partitioning rules as expressed
in Lemma2 and Lemma3. For this, we say that (zo[i], 20[¢] ® 20[¢ — 1]) defines
a partition point (. This partition point gives rise to a 2-dimensional subspace
P which can be defined by two parity check equations, i.e., P is a complement
space of the space

R = {(x1,70) € F3™ | 2[i — 1] @ 21[i — 1] = 0 and zo[i — 2] ® z1[i — 2] = 0}.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 343

22 21 20
21 20 —H
<<$[1
k2 ®
Y F J
He—
Y1 Y Yo Y i
k‘ —> k‘ —> Ya Y1 Yo
e e AP
\ \ Dk, Dk, Dk,
v v v
C1 Co Cy ¢ co
Fig. 5. A simple toy example. Fig. 6. A consecutive case.

For example, P can be chosen as {([],[]), ([t — 1], 1), ([t = 2],), ([—2,¢ — 1], []) }-
To demonstrate the attack from the previous section, we split F3™ into the
direct sum P & R. By the isomorphism between P and F3, we can identify the
elements p € P by two-bit values p = bgby, where by indicates the parity of
Zolt — 1] ® z1[i — 1] and b; indicates the parity of Zo[i — 2] ® x1[i — 2]. We then
consider the following four tuples (7, , Féﬁ‘gbl 4(8ob1)) and corresponding ep,p, ,
whose definition come from the properties presented in Lemma 2 and Lemma 3:

Too =R ®00 =S4 I = ([, [, — 1]) ¥ = ([d], [i,5 — 1,i — 2]) €00 = —1
To =R®01=8\S Lot = ([, [i]) 7O = ([i], [i,i — 1)) €01 = —1
To=R®10=8 I\ =([.[) ¢M=qmnz) ewn=-1
Ty =R®11 =85\ IS = ([, [i,i — 1]) v = ([i], [1]) e =1

For example, to give an intuition for the choice of the first tuple,® when
(y1,90) € S4, Lemma3 tells us that (Fo(ut), (21,20)) = (7 (y1,0)) @ 1, i.e.,
co0 = Coryery, (T 2) @ (1), y)| = -1,

We further have

W = Span{+V &~ ® | a,b € F3} = {([, 1), (0, li~1]), (0, [i—20), ([, [i - 1,i—2])}

and we could recover the two bits kg[i — 1] and kg[é — 2] by the last step using
the fast Walsh-Hadamard transform.

5 Note that we might choose different (Fo(ﬁ[gbl)/y(bobl)) for Tpp,. For example, for
Too = Sa, we might alternatively choose

Fcfg(t)) = ([]7 M) ’Y(OO) = ([l]v [ivi - 1]) €00 = —1,

which is obtained from Lemma2. To verify, note that S4 C Si.

344 C. Beierle et al.

4.3 Another Toy Example Using Multiple Partition Points

Let us now look at another example which consists of two branches of the struc-
ture depiced in Fig.5 in parallel, i.e., (y3,y2,y1,v0) = (F(z3,22), F(z1,20)) and
c; = y;Dk;. By using a single partition point as done in the above example, we can
only evaluate the parity of at most two (consecutive) bits of z = (z3, 22, 21, 20)-
Instead of just one single partition point, we can also consider multiple par-
tition points. For example, if we want to evaluate the parity involving three
non-consecutive bits of z = (z3, 22, 21, 29), We can use three partition points, i.e.

¢1 = (20li], z0[i] @ 20[i — 1]),

G2 = (20l4], 20[5] ® 20[j — 1)),

(3 = (22[0], 22[0] ® 2o[¢ — 1]),
where i, 7, > 2. In a specific attack, the choice of the partition points depends
on the definition of the linear trail. Those partition points give rise to three

subspaces Py, P2, and Ps, defined by two parity-check equations each, i.e., P; is
a complement space of R;, where

Ry = {(x3, 2,21, 20) € F3™ | wo[i — 1] D a1[i — 1] = 0,20[i — 2] @ x1[i — 2] = 0}
Rz = {(z3,22,21,20) € F3™ [wolj — @ @1[j — 1] = 0,20[j — 2] D a1[j — 2] = 0}
Rs = {(x3, 2,21, 20) EF3™ | o[l — 1] ® 3]0 — 1] = 0, 25[¢ — 2] @ z3[¢ — 2] = 0}.
By defining” P = P; & P2 @ P3 and R to be a complement space of P, we split
F3™ into the direct sum P @ R.

We can identify the elements p € P by np-bit values p = bob; ...b,,—1. We
can then again define tuples

(%0b1..-bn7;—1 ? FO(lli(l)ibl.“an_l)7 7(b0b1 “.bnpil)) (3)

by using the properties presented in Lemma2 and Lemma3. For example, if
np = 6, we can define

Toro101 = { (73,22, 71, 0) € F3™ |o[i — 1] # 21[i — 1], wo[i — 2] = x1[i — 2],

zolj — 1] # 21[j — 1], 2o[j — 2] = 21[j — 2],
1‘2[5 — 1] 75 $3[£ — 1],1‘2[€ — 2] = .Ig[f — 2]},
F(Elolztwloj.) = ([]a [€]7 Ha [Zaj])v 7(010101) = ([6]7 [é - 17£]a [Za.]]7 [Z - 1) Za.] - 1a.]])7 and
€o010101 = —1 by using the first case of Lemma 2.
We can also use the three partition points to compute the parity of more
than three bits of z. For example, if np = 6, by using Lemma 2 and 3, we can
define

Tootorr = { (w3, 22,21, 20) € Fy™ |woli — 1] # @1 [i — 1], woi — 2] # x1[i — 2],
zolj — 1 =x1[j — 1], z0lj — 2] # 215 — 2],
Z‘QM— 1] = l‘3[€— 1],33‘2[6— 2] = .133[(— 2]},

7 Note that P is not necessarily a direct sum of P1, P2, and Ps. In other words, the
dimension of P might be smaller than 6, for instance if ¢ = j, i.e., {1 = (2.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 345

and

£ _ (10— 1,4,0,[i - 1,i,)

out
A1) — (0], 0], [i, 4], [i — 2,0 — 1,i,5 — 2,4]), Eoot011 = L,

which evaluates the parity of five bits of z. Again, several choices for the definition
of the tuples in Eq. 3 are possible.

4.4 Analysis for Two Consecutive Modular Additions

To avoid the usage of long linear trails and to reduce the data complexity, we may
use the partition technique for the more complicated structure of two consecutive
modular additions. Inspired by the round function of Chaskey, we consider the
case depicted in Fig. 6.

Suppose that we have the partition point (= (21[i], z1[i] ® z1[¢ — 1]), i.e.,
we want to compute the parity z;[i] and z1[i,7 — 1] from co, ¢1, and ¢ (see
Fig.6). This partition point gives rise to a 5-dimensional subspace P which can
be defined by five parity check equations, i.e., P is a complement space of the
space

R = {(x2,71,20) € F3™ |2afiq — 1] ® z1[ip — 2] © 21[ic — 2] = 0,
xo[ib—l]GBxl[ib—l]:O, .To[ib—2]@$1[ib—2}:07
xo[ic—l]@xl[ic—l]:(), "Eo[’é‘cfﬂ@.’tl[icfmz()},

where i, =i+ a, i, =1+ b, and i, =i+ a + b. Then, if np = 5, we can identify
the elements p; € P by five-bit values p; = bob1babsby, where (bobibabszby) =
(yalia — 1] ® y1liv — 2] ® yalic — 2], s[iy — 1], s[iv — 2], S[ic — 1], s[ic — 2]) with
s = ¥o ® y1. The whole F3™ is partitioned into 2° cosets 7,, = R @ p; and
these partitions can be constructed by guessing 5 bit of key information. The
tuples as in Eq. 3 can be defined by I'"Y) € {LEL D, (4, [, — 1], 1)} and the

out
corresponding linear mask v®?) involves the bits

Yalial, yoliv), y1lin], y1lio — 1], y1liv — 2], volicl, yalicl, yalic — 1], ya[ic — 2].

When i, — 2, iy — 2, and i, — 2 is not extremely close to 0, for each possible
choice of I € {([],[i], 1), ([}, [¢,¢ — 1],]])}, we have 4 tuples corresponding to
correlation ¢ = 41, 8 tuples corresponding to correlation ¢ = +27!, and 12
tuples corresponding to correlation ¢ = £27%263 In other words, a fraction
of 24/32 = 3/4 tuples with non-zero correlation is available, and the average
absolute correlation is (4 x 1) 4 (8 x 271) 4 (12 x 270-263) x 270-415,

5 Application to Chaskey

Chaskey [24] is a lightweight MAC algorithm whose underlying primitive is an
ARX-based permutation in an Even-Mansour construction, i.e., Chaskey-EM.
The permutation operates on four 32-bit words and employs 12 rounds of the
form as depicted in Fig. 7. The designers’ claim security up to 28° computations
as long as the data is limited to 28 blocks.

346 C. Beierle et al.

<<<8+@4> u)3 <<<U+@4>’U
UQ"EE :::IUO;’EE :i:
UO —»EE] «16 wh —»EE] «16
<<<)+@—> U}l <7 »@4>'UI+1

Fig. 7. The round function of Chaskey.

5.1 Overview of Our Attack

We first show the high-level overview of our attack. Similarly to the previous
differential-linear attack from [20], we first divide the cipher into three sub
ciphers, i.e, F; covering 1.5 rounds, F,, covering 4 rounds, and FEs covering
0.5 rounds. The key-recovery is done over 1 round, thus the function F' is cov-
ering 1 round to attack 7 rounds in total. The differential characteristic and
the linear trail are applied to E; and FEs, respectively, while the experimen-
tal differential-linear distinguisher is applied to the middle part E,,. Note that,
since the differential-linear distinguisher over F,, is constructed experimentally,
its correlation must be high enough to be detectable by using a relatively small
sampling space. Moreover, since it is practically infeasible to check all input
difference and all output linear mask, we restricted ourselves to the case of an
input difference of Hamming weight 1 and linear masks of the form [¢] or [¢, i+ 1],
i.e., 1-bit or consecutive 2-bit linear masks. As a result, when there is a non-zero
difference only in the 31st bit (msb) of w}, i.e.,

A= (I (D) (310 (D))

we observed the following two differential-linear distinguishers with correlations
2—5.1:

Corics [w5[20] ® w3[20]] ~ 277, (4)
Cor1cs [w3[20] @ wi[19] ® @3 [20] & w3[19]] ~ 2751 (5)

These correlations® are estimated using a set S consisting of 226 random samples
of w!. This is significant enough since the standard deviation assuming a normal
distribution is 2'3. For simplicity, only the first differential-linear distinguisher
is exploited in our 7-round attack. That is

L= (1), (1200), (1) (0)-

Note that we do not focus on the theoretical justification of this 4-round exper-
imental differential-linear distinguisher in this paper and we start the analysis
for £ and Fs from the following subsection.

8 The first case is the exactly same as the one shown in [20], but its correlation was
reported as 2751, We are not sure the reason of this gap, but we think that 276!
refers to the bias instead of the correlation.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 347

= 1F l ., J ‘...‘.. JE—— _....‘]
=075 e, s e e 000 . . -
= et L eee e, o« .
"8 0 5 [~ L]00 LI X LI X . —|
5 025 o o o . .o . o N
0 I X I I I
0 32 64 96 128
index of flipped bits j
probability |bit index number of indices
1 v : 16,17,18,19,20,22,23,24,25,30,31 18
W= vz : 16,17,18,19,20,22,23
vo : 19,20,31 w3 : 24,25
.95 < v
095—%<1v1:19,20 7

Fig. 8. Probability that flipping 11?/32 [7 mod 32] affects the output difference.

5.2 Differential Part

We need to construct a differential distinguisher A;, — A,, over E;, where
the output difference is equal to the 1-bit difference A,, = (([]), ([]), ([31]), ([]))-
We have 1.5-round differential characteristic of highest probability under this
restriction and its probability is 2717, where

A = ((8,13,21,26,30]), ([8, 18, 21, 30]), ([3, 21, 26)), ([21, 26,27))).

If this differential characteristic is directly used in the differential-linear attack,
the impact on the data complexity is p~2 = 23*, which is quite huge given
the restriction on the data complexity for Chaskey. In order to reduce the data
complexity, we employ the new technique described in Sect. 3. Note that the pre-
vious analysis shown in [20] also employs the same differential characteristic, but
the technique for reducing the data complexity is completely different. We will
compare our technique to the previous technique at the end of this subsection.

Detecting an Appropriate Subspace U. As described in Sect. 3, we want to
detect a subspace U of the input space such that Ey(v°®u)® E;(v° ©ud Aiy) =
A, for all uw € U if B1(v°) @ E1(v° @ Ain) = A,,. Then, for our attack to
be effective, the condition is that 249Ul > ¢r=24=% where r and ¢ denote
the correlation of the differential-linear distinguisher over E,, and the linear
distinguisher over Fs, respectively. If this condition is satisfied, we can reduce
the total data complexity from ep~2r—2¢~* to ep~'r—2¢~%.

Since the four branches are properly mixed with each other within 1.5 rounds,
there is no trivial subspace as in the simple example in Sect.3.1. However, the
diffusion obtained by the modular addition, XOR and rotation is heavily biased.
For example, let us focus on v9[31]. This bit is independent of the 1.5-round
differential trail. Thus, we will experimentally detect bits that do not, or only
very rarely, effect the differential trail, as explained in Sect. 3 in Algorithm 1. We

348 C. Beierle et al.

used this algorithm with a sampling parameter 7 = 232. Due to the differential
probability of 2717, we find on average 232 x 2717 = 215 values of X such that
Ei(X)® E (X @A) = Ay,

Figure 8 summarizes the result of the search. When the basis of the linear
subspace U is chosen from the 18 indices i corresponding to a probability v; = 1,
we are exactly in the setting as explained in Sect.3 and the factor on the data
complexity corresponding to the differential part would be p~!. Unfortunately, 18
indices are not always sufficient to attack 7-round Chaskey. Therefore, we addi-
tionally add 7 indices, i.e., v9[19], vo[20], vo[31],v1[19], v1[20], v3[24], and v3[25]
to define the basis of &. We then randomly picked 256 pairs (X, X @ A;,) that
result in the output difference 4A,, after E; and checked for how many of those
pairs, the equation F1(X ®u) D E1 (X Dud A;y,) = A, is satisfied for all u € U.
As a result, this holds for 222 out of 256 pairs (X, X & A;;,). In other words, we
can estimate the factor on the data complexity corresponding to the differential
part to be (p x 222/256) 1.

Comparison with the Technique of Leurent. In [20], Leurent applied
the partitioning technique to the same 1.5-round differential characteristic. For
applying the partitioning technique, 14 bit of key information need to be guessed
and the impact on the data complexity from the differential part was estimated
as (12328 x 210 x 2’2“1))71 ~ 2299 in [20]. In contrast, our technique does
not need to guess any key bit and the impact on the data complexity from the

differential part is estimated as (p x 222)~! ~ 2!72 when the size of U is 22°.

5.3 Linear Part

In order to attack 7-round Chaskey, we consider as Es 0.5-rounds of Chaskey
and as F' 1.5-rounds of Chaskey. For Fy we consider two trails for the mask

I = (([); ([20]), (1), ([1)), namely
M = v§[11,10,4] ® wi[31, 0] ® w§[16,15],
P(© = 8[11, 4, 3] ® w§[0] ® wi[16].

That is computing (I'0:,, z) corresponds to either 1! or P(©

Similarly, we denote by ¥ and ¥(©) the corresponding parity bits for é.
As discussed in Sect. 4, our attack uses only one of them (with highest absolute
correlation) for each partition. For example, let us assume that (M) is preferable
for the partition belonging to ¢ and (%) is preferable for the partition belonging
to & Then, we compute 1)) and 1/;(0) from c and ¢, respectively, and evaluate the
probability satisfying /(1) = 1)(®), We experimentally evaluated the correlations
of any combination, i.e., the correlation of 2 x 2 differential-linear distinguishers.
Similarly to the experiments in Sect. 5.1, we computed those correlations over a
set S consisting of random samples of w!, but the size of S had to be increased
to 228 because of the lower correlation. As a result, these empirical correlations
are ~ +2764,

Improved Differential-Linear Attacks with Applications to ARX Ciphers 349

1/)(1) w(o)
o u‘_ _ [_;@ _ _“f o w&_ o _w: _ _[;E;]_ _ fn_ _ _u“ A choice : (w§[16],w§[16, 15])
il et Sl e S il ~ (R R
R B R TGP o pe = (sT[15], s (14])
E linear : v3[16], vo[16], vo[15], vo[14]
2 [choice : (v§[11], v3[11, 10])
27.26] | [1110.4] [27 0 (0143 [P2 ? pi & (Lv3[18]L€B V2 [gLv 17],
it et St Sty Inbeteiel et Sulal Sl s [©1 B [10], s7[9], s~ [18], s~ [17])
X E A3 linear : v3[19], v1[11], v2[11], v2[10],
v2[9], v1[19], v2[19], v2[18], v2[17]
F '><+ v><+ choice : (vS[4],v3[4, 3])

‘! Ps 3 p; =2 (v3[11] & v2[2,10],

L Lo
B e T o R e S e NN 1R R s U T
vy v v v 61 vy e s linear : v3[12], v1[4], v2[4], v2[3],
TR TN THRE RN TR T T va(2], v1[12], v2[12], v2[11], v2[10]

Fig. 9. Two 0.5-round linear trails and corresponding partition points.

For Chaskey, we use three partition points as shown in the right table of
Fig.9. The dimension of W for the FWHT is increased by 1 but it does not
affect the size of partitions. As already presented in Sect.4, the corresponding
subspaces P; can be defined by the bits summarized in Fig. 9, where ski=7, ®ug
and s :=73 @ vy. The same table also summarizes the linear bits that can be
involved to a linear combination in the corresponding (1),

For (» and (3, the situation is different since we have to evaluate two con-
secutive modular additions instead of just one. The major difference is that the
corresponding subspace is now of dimension 5, i.e., the condition is defined by a
5-bit value. Further, the corresponding ¢; are not always +1.

Note that because there is a 1-bit interception in the defining bits for P, and
Ps, we have np = dimP = dim(P; @ Po @ P3) =2+ 5+ 5—1 = 11. Namely,
the index p; of the partition 7,, is defined by the 11-bit value

(sB[15], sT[14], v3[18] @ v2[9, 17], s [10], sZ[9], s (18], sL[17],
v3[11] @ 22, 10], s[3], s%[2], s"[11]).

It is difficult to evaluate the actual correlations of all ¢; j,4,7 € {1,...,2"}
experimentally with a high significance. Therefore, we simply assume that these
correlations are common for each partition, i.e., g; ; = 2764 for all ¢ and j.
Since we have two choices ¥(© or /() for the linear mask I7)) that we
use in each partition, we evaluated every correlation of possible I éﬁé) and took
the one with the highest absolute correlation. More precisely, we evaluated each
subspace P; step by step. We start our analysis from P;. For this, the condition
is based on s%[15] and s%[14] and the available linear masks can be immediately

350 C. Beierle et al.

determined as follows.

M, @ if (s7[15], s7[14]) = (0,0),
0 if (sf[15], s%[14]) = (0, 1),
W, @ if (s8[15], s7[14]) = (1,0),
P, if (s%[15], s%[14]) = (1,1).

In other words, the number of available linear masks decreases from 2 to 1 for
210 partitions, and the number is preserved for the other 2'° partitions. We
next focus on Py, but it is more complicated because the index bit s*[10] also
appears in the index for Ps. Since dim(P2®P3) = 9 is not large, we exhaustively
evaluated the correlation of each partition. As a result, 1472 out of 2!! partitions
show a significant correlation and the average of the absolute value of those
correlations is 27077, In the differential-linear attack, this partition analysis
must be executed for both texts in each pair. Thus, when N pairs are used, the

number of available pairs is N* = N x (3372)2 ~ N x 279993 and the correlation

2048
is h = 9—6:4-0.779x2 _ 9—T7.958

We also need to evaluate the dimension of W := Span{’y(p'i) @ ~y®s) | i,j €
{1,...,s}} to evaluate the time complexity for the FWHT. Note that v € W is
always generated by XORing two linear masks. Therefore, bits that are always
set to 1 in the linear masks 49 and v®/) do not increase the dimension of
W. For example, since both 1) and () involves v, [0], it does not increase
the dimension of W. On the other hand, since v;[31] is involved only in (), it
increases the dimension of W by 1. The same analysis can be applied to each
partition point. For example, partition point ¢; involves four bits v3[16], v[16],
vg[15], and vp[14] in the key mask v(P) but both v3[16] and v[16] are always
involved. As a result, the 10 bits

U1 [31], Vo [15}, U0[14], (%) [10], (%] [9], U2 [18], (%) [17}, (%) [3}, (%) [2}, Ug[ll]

are enough to construct any v € W, i.e., dim(W) < 10.

Experimental Reports. To verify our technique, we implemented the attack
and estimated the experimental correlation if the linear masks are appropri-
ately chosen for each partition. Then, for a right pair (X, X & A;,), we used
228 pairs (X @ u, X ®u® Ay,) for u € U. As a result, the number of available
pairs is 227947 and the number well fits our theoretical estimation. On the other
hand, there is a small (but important) gap between our theoretical analysis and
experimental analysis. While this correlation was estimated as 277?58 in our
theoretical analysis, the experimental correlation is 27737, which is much higher
than our theoretical estimation. We expect that this gap comes from linear-hull
effect between ¢; ; and (e;,¢;). The linear masks A(*) and \(V) are fixed in our
theoretical estimation, but it allows to use multiple linear masks similarly to
the conventional linear-hull effect. Moreover, as a consecutive modular addition
causes much higher absolute correlation, we expect that our case also causes
much higher absolute correlation. However, its detailed theoretical understand-
ing is left as a open question in this paper.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 351

Data and Time Complexities and Success Probability. We use the for-
mula in Proposition 1 to estimate the data complexity and corresponding success
probability. To find a right pair, we repeat Algorithm?2 for (p x 222/256)~! =
217-206 times, and we expect to find a right pair with probability 1/2. For each
iteration of Algorithm 2, we use N = 222 pairs, and N* = 221047 By using the
threshold © = VN* x ¢~ (1 — pngﬂ), the expected number of wrong keys
is 1, while” pgyccess = 0.489, where correlation 27737 is used in this estimation.
On this success probability, the data complexity is 21722+17-206 — 240.206 55,
the time complexity is 217-296 x 211 x (2 x 222 4 10 x 210) ~ 251208,

6 Application to ChaCha

The internal state of ChaCha is represented by a 4 x 4 matrix whose elements
are 32-bit vectors. In this section, the input state for the r-th round function is
represented as

vy Uy
Vg U7
VY V11
Ulp V13 V14 V5

In odd and even rounds, the QR function is applied on every column and diag-
onal, respectively. We also introduce the notion of a half round, in which the
QR function is divided into two sub function depicted in Fig. 10. Let w" be the
internal state after the application of a half round on v". Moreover, we use the
term branches for a,b,c and d, as shown in Fig. 10.

In the initial state of ChaCha, a 128-bit constant is loaded into the first row,
a 128- or 256-bit secret key is loaded into the second and third rows, and a 64-bit
counter and 64-bit nonce are loaded into the fourth row. In other words, the first
three rows in v° are fixed. For r-round ChaCha, the odd and even round functions
are iteratively applied, and the feed-forward values v{ B v! is given as the key
stream for all 7. Note that we can compute v} for i € {0,1,2,3,12,13,14, 15}
because corresponding v) is known.

6.1 Overview of Our Attack

We use the same attack strategy as for Chaskey. The cipher is divided into the
sub ciphers F; covering 1 round, E,, covering 2.5 rounds, and F5 covering 1.5
rounds to attack 6 rounds, and F' the key recovery is applied to the last one
round. One difference to Chaskey is the domain space that can be controlled
by the attacker. In particular, we cannot control branches a,b, and ¢ because
fixed constants and the fixed secret key is loaded into these states. Thus, only
branch d can be varied. It implies that active bit positions for input differences

9 It means that the success probability is 0.489 x 2 = 0.978 under the condition that
the right pair is successfully obtained during 2'7-2°6 iterations.

352 C. Beierle et al.

a b c d
v r+1 r+1 r+1 r+1 T r r r
B i (vo" " vy vg" ,v1a) = QR(vg, va, vs, v12)
o
v r+1 r+1 r+1 r+1 T r r r
é (v v5" v, v15) = QR(v1, vg, vg, v13)
half round M« »
—+1 r+1 r+1 r4+1y r r 7 r
EAn (27 v, vi0 »vis) = QR(vz,v6, V10, V14)
= r+1 r+1 r+1 | r4+1y ro,r T T
(3", v7" L v1n 15) = QR(v3,v7, 011, V15)
He—
Y
v 'r+2 7‘+2 742 T2\ 'r+1 r+1 r+1 7‘+1
B (vo""svs 010 sv15) = QR(vg ;U105 V15)
half round B« +2 42 +2 1o n 1 41 4 1
T r T T T T 7‘ 7“
@< (vy vl 512) = QR(v sV s V12)
'r+2 'r+2 r+2 r4+2y r+1 'r+1 'r+1 'r+1
v (v vg U130) = QR(vy V13)
'r+2 'r+2 r+2 r+2 7‘+1 r+1 'r+1 'r+1
QR(a,b,¢,d) (vs Vg sv1a) = QR(vs V14)

Fig. 10. The odd and even round functions of ChaCha.

are limited to branch d and a difference 4A,, after £, with Hamming weight is
1 will not be available due to the property of the round function. Therefore, we
first need to generate consistent 4,, whose Hamming weight is minimized. The
following shows such differential characteristics over one QR function.

Ay = (D, (D (D, (D)) — A= (([i +28]), ([i + 31,0 + 23,0 + 11,4 + 3)),
(li + 24,0 + 16,0+ 4]), (i + 24,1 + 4])).

The probability that pairs with input difference A;,, satisfy this characteristic
is 27° on average. We discuss the properties of this differential characteristic in
Sect. 6.2 in more detail.

We next evaluate an experimental differential-linear distinguisher for the
middle part F,,. When the Hamming weight of I}, is 1 and the active bit is
in the Isb, it allows the correlation of linear trails for F5 to be lower. For i = 6,
ie., A, = (([2),([5,29,17,9]), ([30, 22, 10]), ([30, 10])), we find the following four
differential-linear distinguishers.

A(Ugl‘:vgl'+4vvgl'+87v]1'+12) Ap — COI'[(j+1) mod 4[0] ® @(3j+1) mod 4[0]] = 278'37

for j € {0,1,2,3}. When this experimental distinguisher is combined with the
differential characteristic for F1, it covers 3.5 rounds with a 1-bit output linear
mask I,. This differential-linear distinguisher is improved by 0.5 rounds from
the previous distinguisher with 1-bit output linear mask (see [1,11]).

6.2 Differential Part

The QR function is independently applied to each column in the first round.
Therefore, when the output difference of one QR function is restricted by A,,
the input of other three QR functions are trivially independent of the output

Improved Differential-Linear Attacks with Applications to ARX Ciphers 353

difference. It implies that we have 96 independent bits, and we can easily amplify
the probability of the differential-linear distinguisher. On the other hand, we face
a different problem, namely that the probability of the differential characteris-
tic (Ain, Ar) highly depends on the value of the secret key. For example, for
Av),[6] = 1, we expect that there is a pair (vYy, vy © 0x00000020) satisfying
A(vd, v}, v8,viy) = Ay, but it depends on the constant v and the key values
v] and v). In our experiments, we cannot find such a pair for 292 out of 1024
randomly generated keys. On the other hand, when we can find it, i.e., on 732
out of 1024 keys, the average probability satisfying A(vd, v}, vi,vly) = Ay, is
2745 This experiment implies the existence of “strong keys” against our attack.
However, note that we can vary the columns in which we put a difference, which
involve different key values. Since the fraction of “strong keys” is not so high, i.e.,
292/1024, we can assume that there is at least one column in which no “strong
key” is chosen with very high probability.

To determine the factor p, for 1024 randomly generated keys, we evaluated
p~! randomly chosen iv and counter, where the branch that we induce the dif-
ference is also randomly chosen. As a result, we can find a right pair on 587 keys
with p~! = 2° iterations. Therefore, with p = 27°, we assume that we can find
a right pair with probability 1/2 in this stage of the attack.

In the following, we explain our attack for the case that vy, is active and
A(vd, vi,vd,v1) = A, Note that the analysis for the other three cases follows
the same argument.

6.3 Linear Part for 6-Round Attack

To attack 6-round ChaCha, we first construct a 5-round differential-linear distin-
guisher, where 1.5-round linear trails are appended (i.e. the E5 part) to the 3.5-
round experimental differential-linear distinguisher from the previous section.
We have two 1.5-round linear trails given by

Corlwi[0] &™) =27, Corfwi[0] & 7] = —27,
where 1) = 1) @ v5,[6] and ¥ = ¢ @ v3,[6], and

= (v3[19,7) & v7p[19, 7] @ v7;5[8, 0]) @ (v7[0] @ vg[26] @ v, [0])
& (vis[0]) @ (v3[0] @ v3[12) ® vy [7).

Since their correlations are £27!, we have 2 x 2 differential-linear distinguishers
on 5 rounds whose correlations are 27103, Note that the sign of each correlation
is deterministic according to the output linear mask.

Our 6-round attack uses these 5-round differential-linear distinguishers, and
the 1-round key recovery is shown in Fig. 11. Let ¢ = (cg, ..., c15) be the corre-
sponding output, and let v = (v, .. .,v15) be the sixteen 32-bit values before the
secret key is added. Note that the secret key is only added with half of the state
and public values are added with the other state. Therefore, we simply regard
v; = ¢; for i € {0,15,1,12,2,13,3, 14}.

354 C. Beierle et al.

5 .5 .5 5 5 ,5 .5 .5 5 .5 .5 .5 .5 .5 .5 5
Vo Vs Vip Vis U1 Vs Vi1 V12 Vg U7 Ug Uiz Uz Uy Vg Uiy
O 19,7 12]
L‘“’(l) [19,7.6] 12
A v
B = B B
& O O O
v v v v
]] B 6 BH<—]
8 e S O ta] - D]
°Is X 19.7] 26 ¥ L1
e I B -] &3
T 19.7] T 2 T B
53] 53]
=] E=] E=] E=]
] <]] He—]
Dy D D ?47
Vo Vs Vip Vis Uy Vg V11 Vi2 Uy U7 Ug Uiz V3 Vg Vg Vpy
[24,16,0] [26.7.6] [31,19,0] [24,0 19,13,7] [12,6,0] [8] 16,0] [7] (0] [24] [23220](19.7] [12] [31.30,0]
24,16,0] [26,7.6] [31,19,0] [24,0 19,13,7] [12,6,0] [8] 16,0) [7 0] [24] [230] [19.7] [12] [3L0
ooy vy voo¥ vyo¥
Bk, Bk Bks Bk Bk, Bk Bk, Bk
vo¥ vy vo¥ vy
Co €5 C10 C15 €1 Ce C11 Ci2 Ca C7 Cg Ci3 C3 €4 Cg Ciyq

Fig. 11. Key recovery for 6-round ChaCha.

First, we partially extend two linear masks for the last round so that it can
be linearly computed. Figure 11l summarizes the extended linear masks, where
we need to compute the bits labeled by a red color. Moreover, for simplicity, we
introduce tg, t19, t11, and t3 as depicted in Fig. 11.

Each bit in v in which the secret key is not added can be computed for free.
For the other bits, we need to guess some key bits first. We first explain the
simple case, i.e., we compute v;[j] from ¢;. As an example, we focus on v7[7],
which involves k7 nonlinearly. We apply the partition technique to compute this
bit, where (3/4) data is available by guessing k7[6] and k7[5] (remember that
k7[7] cancels out in the differential-linear approximation). Since v;[0] is linearly
computed by ¢;[0], there are 13 simple partition points in which we need to guess
key bits. In total, we need to guess a 26-bit key and (3/4)'® data is available.

Computing bits in v® and ¢ is a bit more complicated than the simple case
above. For example, let us consider v3[12], and this bit can be computed as

U8[12] = (Cg =] k9 = C14 H (C3 (&) (’U14 > 8)))[12]
= ((c9 Bera B (c3 ® (via > 8))) B ko)[12].

Since we can compute (cgBc14B(c3® (v14 3> 8))) for free, this case is equivalent
to the simple case. We also use this equivalent transformation for tyq, t11, and
v10[19]. In total, we have 6 such partition points, and some partition points
can share the same key, e.g., 2-bit key k19[18] and k1o[17] is already guessed to
compute v19[19]. Guessing 4 bits of additional key is enough to compute each bit.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 355

Since we have two linear masks ¥(©) and (), the number of available partitions
does not decrease for v3)[7]/v3,[7, 6]. Therefore, (3/4)° data is available.

We cannot use the equivalent transformation to compute bits in ¢y and t¢3.
Then, we further extend this linear mask with correlation 2~ !. For example, we
have the following approximations

t()[8] ~ ’UQ[& 7} ©® U5[15} ©® U10[8} D 1, t0[8] ~ ’UO[S] ©® 1)5[15, 14] ©® ’01()[87 7],

for to[8] with correlation 27!, and we can use preferable approximations depend-
ing on the data. Namely, we first guess k10[7] and determine which linear approx-
imations are available. Then, we guess ks[14] and k5[13] and compute v5[15]
(resp. v5[15, 14]) with the fraction of available partitions 3/4. In order words, we
guess 3-bit key and 3/4 data is available. We also use the same technique for
to[7]/to[7, 6]. Therefore, 6-bit additional key is required, (3/4)? data is available,
but the correlation is £2710-372x2 = 42-14.3,

In summary, the fraction of available partitions is (3/4)1375%2 ~ 2783 We
need to guess 36-bit key in total.

We finally estimate the data and time complexities. When we use N pairs,
the number of available pairs is N* = N x 22X783 & N2716:6 and the average
correlation is 27143, Note that unlike Chaskey, once these key bits are cor-
rectly guessed, all linearly involved bits are either determined or cancelled out
by XORing another text. It implies dim(WW) = 0 and we do not need to proceed
with the FWHT.

Data and Time Complexities and Success Probability. We use the
formula in Proposition1 to estimate the data complexity and corresponding
success probability. To find a right pair, we repeat Algorithm2 for 2° times.
For each pair, we use N = 2°2 pairs, and N* = 2354 For the thresh-
old ® = VN* x &71(1 — 22%;), the expected number of wrong keys is 1,
but'® peuccess = 0.499. For this success probability, the data complexity is
91+52+5 _ 958

If we guess 230 keys for each texts, the required time complexity is 258436 =
. However, note that once we get a pair, we can immediately compute those
kp values that correspond to valid partitions. Consequently, we only iterate
through those kp values for every pair. The time complexity is estimated as
1/p x (2N + 2N* x 2"P) ~ 2774,

294

6.4 The 7-Round Attack

Unfortunately, 7-round ChaCha is too complicated to apply our technique for
the linear part. On the other hand, thanks to our other contribution for the dif-
ferential part, we find a new differential-linear distinguisher which is improved
by 0.5 rounds. Therefore, to confirm the effect of our contribution for the differ-
ential part, we use the known technique, i.e., the probabilistic neutral bits (PNB)

10 Note that it means that the success probability is 0.499 x 2 = 0.999 under the
condition that the right pair is successfully obtained during 27 iterations.

356 C. Beierle et al.

approach, for the key-recovery attack against 7-round ChaCha. The PNB-based
key recovery is a fully experimental approach. We refer to [1] for the details and
simply summarize the technique as follows:

— Let the correlation in the forward direction (a.k.a, differential-linear distin-
guisher) after r rounds be €4.

— Let n be the number of PNBs given by a correlation . Namely, even if we
flip one bit in PNBs, we still observe correlation ~.

— Let the correlation in the backward direction, where all PNB bits are fixed
to 0 and non-PNB bits are fixed to the correct ones, is €,.

Then, the time complexity of the attack is estimated as 22°6—" N 4+2256— where
the data complexity N is given as

N <\/o¢ log(4) +3,/1 — ege§>2’

€a€d

where « is a parameter that the attacker can choose.

In our case, we use a 4-round differential-linear distinguisher with correla-
tion g = 2783, Under pairs generated by the technique shown in Sect. 6.2, we
experimentally estimated the PNBs. With v = 0.35, we found 74 PNBs, and its
correlation e, = 2719-679 Then, with o = 36, we have N = 24383 and the time
complexity is 222586, Again, since we need to repeat this procedure p—! times,
the data and time complexity is 24883 and 2230-86 respectively.

7 Conclusion and Future Work

We presented new ideas for differential-linear attacks and in particular the best
attacks on ChaCha, one of the most important ciphers in practice. We hope
that our framework finds more applications. In particular, we think that it is
a promising future work to investigate other ARX designs with respect to our
ideas.

Besides the plain application of our framework to more primitives, our work
raises several more fundamental questions. As explained in the experimental
verification, we sometimes observe absolute correlations that are higher than
expected, which in turn make the attacks more efficient than estimated. Explain-
ing those deviations from theory, likely to be caused by linear-hull effects, is an
interesting question to tackle. Related to this, we feel that — despite interesting
results initiated by [25] — the impact of dependent chains of modular additions
on the correlations is not understood sufficiently well and requires further study.

Finally, we see some possible improvements to our framework. First, it might
be beneficial to use multiple linear mask per partition, while we used only one in
our applications. This of course rises the question of independence, but maybe a
multidimensional approach along the lines of [16] might be possible. Second, one
might improve the results further if the estimated values for 3(vy) are replaced by
a weighted sum, where partitions and masks with higher correlations are given
more weight than partitions and masks with a comparable low correlation.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 357

Acknowledgments. We thank the anonymous reviewers for their detailed and helpful
comments. We further thank Lukas Stennes for checking the application of our frame-
work to ChaCha in a first version of this paper. This work was funded by Deutsche
Forschungsgemeinschaft (DFG), project number 411879806 and by DFG under Ger-
many’s Excellence Strategy - EXC 2092 CASA - 390781972.

References

1.

o

10.

11.

12.

13.

14.

Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features
of latin dances: analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE
2008, Revised Selected Papers. LNCS, vol. 5086, pp. 470-488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71039-4_30

Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal Blake. In:
Submission to NIST (2008)

Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119-135. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38980-1_8

Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: a new tool for
differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019, Part I. LNCS, vol. 11476, pp. 313-342. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2_11

Beierle, C., et al.: Lightweight AEAD and Hashing using the sparkle permutation
family. TACR Trans. Symm. Cryptol. 2020(S1), 208-261 (2020)

Bernstein, D.J.: ChaCha, a variant of Salsa20 (2008). http://cr.yp.to/chacha.html
Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84-97. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68351-3_8

Biham, E., Carmeli, Y.: An improvement of linear cryptanalysis with addition
operations with applications to FEAL-8X. In: Joux, A., Youssef, A. (eds.) SAC
2014, Revised Selected Papers. LNCS, vol. 8781, pp. 59-76. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13051-4 4

Biham, E.,; Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2—-21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1

Carlet, C.: Boolean functions for cryptography and error correcting codes. In:
Crama, Y., Hammer, P. (eds.) Boolean Methods and Models. Cambridge Uni-
versity Press (2007)

Choudhuri, A.R., Maitra, S.: Significantly improved multi-bit differentials for
reduced round Salsa and ChaCha. IACR Trans. Symm. Cryptol. 2016(2), 261-
287 (2016)

Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of
Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS,
vol. 4817, pp. 77-88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-76788-6_7

Coutinho, M., Neto, T.C.S.: New multi-bit differentials to improve attacks against
ChaCha. TACR Cryptology ePrint Archive 2020/350 (2020). https://eprint.iacr.
org/2020/350

Dey, S., Sarkar, S.: Improved analysis for reduced round Salsa and ChaCha. Dis-
crete Appl. Math. 227, 58-69 (2017)

https://doi.org/10.1007/978-3-540-71039-4_30
https://doi.org/10.1007/978-3-642-38980-1_8
https://doi.org/10.1007/978-3-030-17653-2_11
https://doi.org/10.1007/978-3-030-17653-2_11
http://cr.yp.to/chacha.html
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-319-13051-4_4
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/978-3-540-76788-6_7
https://doi.org/10.1007/978-3-540-76788-6_7
https://eprint.iacr.org/2020/350
https://eprint.iacr.org/2020/350

358

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

C. Beierle et al.

Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Grofischadl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: SPARX and LAX. In: Cheon,
J.H., Takagi, T. (eds.) ASTACRYPT 2016, Part I. LNCS, vol. 10031, pp. 484-513.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_18
Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis. J.
Cryptol. 32(1), 1-34 (2019)

Khovratovich, D., Nikoli¢, I.: Rotational cryptanalysis of ARX. In: Hong, S.,
Iwata, T. (eds.) FSE 2010, Revised Selected Papers. LNCS, vol. 6147, pp. 333—
346. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_19
Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002, Revised Papers. LNCS, vol. 2365, pp. 112-127. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45661-9_9

Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17-25. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48658-5_3

Leurent, G.: Improved differential-linear cryptanalysis of 7-round Chaskey with
partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I.
LNCS, vol. 9665, pp. 344-371. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49890-3_14

Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties
of addition. In: Matsui, M. (ed.) FSE 2001, Revised Papers. LNCS, vol. 2355, pp.
336-350. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X _28
Maitra, S.: Chosen IV cryptanalysis on reduced round ChaCha and Salsa. Discrete
Appl. Math. 208, 88-97 (2016)

Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386-397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7_33

Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In:
Joux, A., Youssef, A. (eds.) SAC 2014, Revised Selected Papers. LNCS, vol. 8781,
pp. 306-323. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-
419

Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Rob-
shaw, M. (ed.) FSE 2006, Revised Selected Papers. LNCS, vol. 4047, pp. 144-162.
Springer, Heidelberg (2006). https://doi.org/10.1007/11799313_10

Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved key recovery attacks on reduced-
round Salsa20 and ChaCha. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC
2012, Revised Selected Papers. LNCS, vol. 7839, pp. 337—-351. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37682-5_24

Shimizu, A., Miyaguchi, S.: Fast data encipherment algorithm FEAL. In: Chaum,
D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 267—278. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5_24

Todo, Y., Leander, G., Sasaki, Yu.: Nonlinear invariant attack. In: Cheon, J.H.,
Takagi, T. (eds.) ASTACRYPT 2016, Part II. LNCS, vol. 10032, pp. 3-33. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_1

Wallén, J.: Linear approximations of addition modulo 2". In: Johansson, T. (ed.)
FSE 2003, Revised Papers. LNCS, vol. 2887, pp. 261-273. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39887-5_20

https://doi.org/10.1007/978-3-662-53887-6_18
https://doi.org/10.1007/978-3-642-13858-4_19
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/3-540-45473-X_28
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/11799313_10
https://doi.org/10.1007/978-3-642-37682-5_24
https://doi.org/10.1007/3-540-39118-5_24
https://doi.org/10.1007/978-3-662-53890-6_1
https://doi.org/10.1007/978-3-540-39887-5_20

	Improved Differential-Linear Attacks with Applications to ARX Ciphers
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Differential-Linear Attacks
	2.2 Partitioning Technique for ARX-Based Designs

	3 The Differential Part – Finding Many Right Pairs
	3.1 Fully Independent Parts
	3.2 Probabilistic Independent Parts

	4 The Linear Part – Advanced Partitioning and WHT-based Key-Recovery
	4.1 Multiple Linear Approximations and Partitioning
	4.2 A Simple Toy Example
	4.3 Another Toy Example Using Multiple Partition Points
	4.4 Analysis for Two Consecutive Modular Additions

	5 Application to Chaskey
	5.1 Overview of Our Attack
	5.2 Differential Part
	5.3 Linear Part

	6 Application to ChaCha
	6.1 Overview of Our Attack
	6.2 Differential Part
	6.3 Linear Part for 6-Round Attack
	6.4 The 7-Round Attack

	7 Conclusion and Future Work
	References

