
Designs, Codes and Cryptography
https://doi.org/10.1007/s10623-020-00736-9

Proving the biases of Salsa and ChaCha in differential attack

Sabyasachi Dey1 · Santanu Sarkar2

Received: 19 June 2019 / Revised: 21 November 2019 / Accepted: 5 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Salsa and ChaCha are two of the most famous stream ciphers in recent times. Most of the
attacks available so far against these two ciphers are differential attacks, where a difference
is given as an input in the initial state of the cipher and in the output some correlation is
investigated. This correlation works as a distinguisher. All the key recovery attacks against
these ciphers are based on these observed distinguishers. However, the distinguisher in the
differential attack was purely an experimental observation, and the reason for this bias was
unknown so far. In this paper, we provide a full theoretical proof of both the observed
distinguishers for Salsa and ChaCha. In the key recovery attack, the idea of probabilistically
neutral bit also plays a vital role. Here, we also theoretically explain the reason of a particular
key bit of Salsa to be probabilistically neutral. This is the first attempt to provide a theoretical
justification of the idea of differential key recovery attack against these two ciphers.

Keywords Salsa · ChaCha · Probabilistic neutral bits · Bias · Theoretical justification

Mathematics Subject Classification 94A60

1 Introduction

Salsa20 was designed by D. Bernstein in the year 2005 as a candidate for the eStream [2]
project organised in Europe by EU ECRYPT. It was one of the finalists in this competition.

The first version of this work [30] was presented in the “Eleventh International Workshop on Coding and
Cryptography (WCC 2019)”.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue
on Coding and Cryptography 2019”.

B Santanu Sarkar
sarkar.santanu.bir@gmail.com

Sabyasachi Dey
sabya@hyderabad.bits-pilani.ac.in

1 Department of Mathematics, Birla Institute of Technology and Science Pilani, Hyderabad, Jawahar
Nagar, Hyderabad 500078, India

2 Department of Mathematics, Indian Institute of Technology Madras, Sardar Patel Road, Chennai
600036, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-020-00736-9&domain=pdf
http://orcid.org/0000-0001-6821-920X

S. Dey, S. Sarkar

The original version of Salsa has 20 rounds. However, the designer submitted the 12 rounds
version in eStream. The first cryptanalysis against Salsa was presented by Crowley [5],
who attacked it up to five rounds. Later, six rounds and seven rounds Salsa were attacked
respectively by Fischer et al. [12] and Tsunoo et al. [20].

ChaCha is a variant of Salsa, designed in 2008 byBernstein. ChaCha has a similar structure
as Salsa, but uses a more complicated round function. ChaCha was begun to be adopted in
Chrome in 2013 [3]. It officially became an IETF RFC for use in TLS, adopted by Google
and many others, in 2016.

So far, Salsa and ChaCha have been attacked only up to eight and seven rounds, respec-
tively. The central ideas of most of the attacks are based on differential distinguisher. In
this attack procedure, a difference is given as an input in the initial state. After running
the cipher by a few rounds, if some bias is observed at the output, the cipher is said to be
distinguishable up to that round. In both these ciphers, it has been experimentally observed
that on applying a difference at a single bit, some bias can be observed at a bit of the out-
put up to fourth round. This bias is called forward bias. This bias has been exploited to
produce key recovery attacks against the ciphers. Fischer et al. [12] used it in a key recov-
ery attack up to sixth round in Salsa. In 2008, Aumasson et al. [1] produced a significant
improvement in this attack by introducing the idea of probabilistically neutral bits. By using
the differential in the 4th round, they attacked Salsa up to 8th round. Similarly, using a
differential in the 3rd round, ChaCha has been attacked up to 7th round. The time com-
plexities of these attacks were 2251 for Salsa and 2248 for ChaCha. Afterwards, there have
been further improvements in the attack complexities in the works of [14,15,19]. Maitra
[14] improved the observed bias for Salsa and ChaCha by properly choosing IVs in the
key recovery attack. In 2012, Shi et al. [19] introduced a multi-step method of recovering
the key. In FSE 2016, Choudhuri and Maitra [4] found a distinguisher in the 5th round of
these ciphers by a linear combination of multiple bits of the output. In 2017, Dey and Sarkar
[7] provided an algorithm to get a better set of probabilistic neutral bits. Several recent
works in this area can be found in [6,9–11,17]. But still, none of the works has been able
to extend the key recovery attack up to the next round for any of the ciphers in the last
decade.

For a major improvement in this attack method, we need a detailed analysis of the whole
attack procedure. The whole attack idea is so far mostly based only on experimental obser-
vations. Starting from the distinguisher, the idea of probabilistic neutral bits, meet-in-the
middle attack, etc. mostly rely on experimental observations. A detailed investigation on
the internal mechanism of the attacks is required. This may help to find some logical way
to achieve some new trick that can provide a significant improvement. In the past, there
have been several works in the field of stream ciphers which focus on investigating some
experimental results and provide explanation of those results theoretically. For example, if
we look at the research works on the stream cipher RC4, we can see various works on the
theoretical justifications of several experimental results. In FSE 2001, Mantin and Shamir
[16] proved a significant bias in the second output byte. In 2013 FSE, Isobe et al. [13]
observed another bias in RC4 and provided a theoretical justification for this bias. In Jour-
nal of Cryptology 2014, Sengupta et al. [18] gave the accurate theoretical proof of biases
of output bytes in RC4 towards zero. In Cryptography and Communication 2019, Dey and
Sarkar [8] provided theoretical justification of the r th round output Zr of RC4 towards
r .

However, in the differential attack approach on Salsa and ChaCha, there have not been
many theoretical works which investigate the reason of the experimental results. In this work,
we go through the internal mechanism of how the differential distinguisher is created. We

123

Proving the biases of Salsa and ChaCha in differential attack

try to explain the forward bias theoretically for both Salsa and ChaCha. Then, we give a
brief insight into the idea of a probabilistically neutral bit, which plays a vital role in the key
recovery attack.
Paper organisation

– In Sect. 2,we provide the structures of the two ciphers and discuss the idea of distinguisher
in the differential attack.

– Section 3 provides the proofs of some theoretical results on probability which we use
later in proving the forward bias for the two ciphers.

– Section 4, we provide a few points about our process and terminologies of the proof.
– In Sect. 5 we prove the forward bias observed in Salsa.
– Section 6 proves the forward bias for ChaCha.
– In Sect. 7 we give a theoretical justification for a probabilistic neutral bit for Salsa.
– Section 8 concludes the paper.

2 Structure

Salsa Salsa uses a 256 bit key in its algorithm. Another 128 bit key version is also there, which
replicates its 128 bit key to another copy and produces total 256 keybits. The internal state of
Salsa is basically a matrix of size 4×4. Each of the 16 cells contains a 32-bit binary number,
which is called a ‘word’. These 16 words or cells can be divided into three categories:

(1) Constant cells these cells lie in the diagonal of thematrix. These contain some predefined
constant 32-bit numbers and are denoted by ci ’s. The values of these cells are given below
in hexadecimal form:

c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574.

(2) Key cells there are eight cells in the matrix which contain the keybits. These are denoted
by k0, k1, . . . , k7.

(3) Counters and nonces there are four cells t0, t1, v0 and v1 which are counters and nonces.
These are also called IVs.

X =

⎛
⎜⎜⎝

X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

X12 X13 X14 X15

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

⎞
⎟⎟⎠ .

The initial matrix is denoted by X or X (0). This matrix is updated by a function called
quarterround. Each of the updates is called a round. After completion of r rounds, we denote
the updated matrix as X (r). The original version of Salsa has 20 rounds. The quarterround
function works on a 4-tuple (a, b, c, d). It uses three operations: addition modulo 232 (+),
left rotation (≪) and XOR (⊕). The function is as follows:

b = b ⊕ ((a + d) ≪ 7),

c = c ⊕ ((b + a) ≪ 9),

d = d ⊕ ((c + b) ≪ 13),

a = a ⊕ ((d + c) ≪ 18).

123

S. Dey, S. Sarkar

This function works on the columns and rows of the matrix in alternative round. The four
entries of the columns (similarly rows) are taken to be the inputs (a, b, c, d) of the quar-
terround function. After application of the function, the updated (a, b, c, d) replaces the
previous four entries of the columns or rows. However, the order of choosing the (a, b, c, d)
for the four columns are (X0, X4, X8, X12), (X5, X9, X13, X1), (X10, X14, X2, X6) and
(X15, X3, X7, X11). For the rows the order is: (X0, X1, X2, X3), (X5, X6, X7, X4),

(X10, X11, X8, X9) and (X15, X12, X13, X14). In the odd rounds it works on the columns
and this is called columnround. Application on rows are performed in the even rounds and
called rowround.

The final round is denoted by R and the corresponding matrix by X (R). This X (R) is added
with the initial matrix X (0) by usual matrix addition modulo 232. The sum is given as the
output:

Z = X (0) + X (R).

ChaCha ChaCha has the same key size and basic design as Salsa. Similar to Salsa, it also
uses a 128 bit IV. However, the positions of the constant cells, IV cells and key cells are
different in ChaCha from Salsa. The first row contains the constant cells, second and third
row contain the key cells and fourth row contains the IV cells. The values of the constant
cells are also the same as that of Salsa.

X =

⎛
⎜⎜⎝

X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

X12 X13 X14 X15

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 t1 v0 v1

⎞
⎟⎟⎠ .

The quarterround function used in ChaCha is different from Salsa. It is given as follows:

a = a + b, d = ((d ⊕ a) ≪ 16),

c = c + d, b = ((b ⊕ c) ≪ 12),

a = a + b, d = ((d ⊕ a) ≪ 8),

c = c + d, b = ((b ⊕ c) ≪ 7).

In ChaCha, unlike Salsa, the quarterround is applied on the columns and diagonals. The
odd rounds are columnrounds and the even rounds are diagonalrounds. The order of choos-
ing (a, b, c, d) for columns is (X0, X4, X8, X12), (X1, X5, X9, X13), (X2, X6, X10, X14)

and (X3, X7, X11, X15). For diagonals it is as: (X0, X5, X10, X15), (X1, X6, X11, X12),

(X2, X7, X8, X13) and (X3, X4, X9, X14).

The output generation function is also same as Salsa:

Z = X (0) + X (R).

Notations we give a list of the notations used in this paper.

– Xi denotes the i th cell of the matrix X .
– Xi [j] denotes the j th bit of the cell Xi .

– X (r) denotes the matrix after r rounds.
– X (r)

i [j] denotes the j th bit of the i th cell of the matrix after r rounds.
– location (p, q) denotes the qth bit of the pth cell.
– If we add two numbers a and b, by (a+b)[j]we denote the j th bit of the sum a+b. For

example, the j th bit of the sum of two cells Xi1 and Xi2 is denoted by (Xi1 + Xi2)[j].
– The difference at the position (i, j) of X and X ′ is denoted by Δi [j], i.e.,

Δi [j] = Xi [j] ⊕ X ′
i [j].

123

Proving the biases of Salsa and ChaCha in differential attack

– Pr(A) denotes the probability of the event A.
– For any event A, by Ac we denote the complement event of A, i.e., the event that A does

not occur. Therefore, Pr(Ac) = 1− Pr(A).
– P(i, j) denotes the probability of the event that the matrices X and X ′ have the same value

at position (i, j), i.e., Δi [j] = 0. So, P(i, j) = Pr(Xi [j] = X ′
i [j]) = Pr(Δi [j] = 0).

In general, when we compare two numbers a and a′, P(a, j) denotes the probability that
the j th bit of a and a′ are equal. In the figures, we have denoted the probability by P.

– PNB denotes probabilistic neutral bits.

Idea of distinguisher in the differential attack here we discuss in brief the idea of a distin-
guisher in the differential attack on Salsa and ChaCha. The initial matrix X is constructed by
choosing the IV randomly. A single bit (i, j) of a IV is changed in the initial matrix X produc-
ing a newmatrix X ′.As in the work of Aumasson et al. [1], the difference is given at position
(7, 31) in Salsa, and at position (13, 13) in ChaCha. Then, the algorithm is applied for r
rounds on both X and X ′.After r rounds, a correlation is observed at some bit position (p, q)
of X and X ′, i.e., the bit (p, q) of X and X ′ (after r rounds) are equal with a probability other
than 1

2 . So, according to the notation mentioned before, the probability P(p,q) = 1
2 (1+ εd),

where εd �= 0 is the bias. This bias is used to distinguish the cipher output from a random
sequence. This is called the forward bias. It is an experimental observation and no theoretical
approach has been made to justify the proper reason for this bias. In this paper, we attempt
to prove this bias. For Salsa, the position (p, q) is (1, 14) after 4 rounds and for ChaCha it is
(11, 0) after 3 rounds. We track the propagation of the input difference after each round and
reach the r th round to find the bias in the position (p, q). In this context, we clearly mention
here that throughout the paper whenever we say that a cell or bit is “not affected” or “not
influenced” by the difference, we mean that up to that round, the same cell or bit position
has the same value for X and X ′.

In the next section, we provide some theoretical results based on probability. After that,
in Sects. 5 and 6 we use these results to prove the biases observed in the fourth round of
Salsa and third round of ChaCha.

3 Somemathematical results

Here, at first we state without proof a lemma from [7]. For the proof, one can check [7].

Lemma 1 a = a31a30a29 · · · a0 and b = b31b30b29 · · · b0 be two independent uniformly
randomly chosen numbers of 32 bits. Let b′ = b′31b′30b′29 · · · b′0 be a number which differs
at exactly one bit (say nth, n ≤ 31) from b. Consider S = a + b mod 232 and S′ = a + b′
mod 232. Then for any k ≥ 0 such that n + k ≤ 31, the probability that S and S′ will differ
at (n + k)-th bit is 1

2k
.

One important fact that we need to clarify here is that, when the (n + k)th bit of S and
S′ differs, it implies that all the bits from nth to (n + k − 1)th differs. it is not possible that
for some i < k, the (n + i)th bit would be equal even if the (n + k)th bit has difference.
So, in other words, we can state the lemma in a better way that that: The difference would
propagate to (n + k)th bit with probability 1

2k
.

We will use this result repeatedly in our proofs in this paper.
Next, we deal with a case which is slightly more complicated and generalised. Suppose

we add two different pairs of numbers a with b and a′ with b′, where the bits ai ’s of a and
a′i ’s of a′ match with some given probabilities pi ’s. Similarly, bits of b and b′ match with

123

S. Dey, S. Sarkar

probabilities qi ’s. In such case, can we find the probabilities for the bits of a + b to be equal
to the corresponding bits of a′ + b′? Let us start with the simple case when both a and b are
single bit numbers. For any number X , by Xi we denote the i th bit of X , from the right side
(the least significant bit is the 0th bit).

Theorem 1 Let a, b be two independent uniformly randomly chosen single bit numbers. Let
a′, b′ be single bit numbers chosen from a joint distribution such that Pr(a = a′) = p,
Pr(b = b′) = q and Pr(b = 0) = Pr(a = 0) = 1

2 . Let s = a + b and s′ = a′ + b′. Then the
probability Pr(si = s′i) can be given by:

(1) pq + (1− p)(1− q) for i = 0.
(2) 1+pq

2 for i = 1.

Proof (1) For i = 0 in this case, s0 = a⊕b and s′0 = a′⊕b′. So, s0 = s′0 implies s0⊕s′0 = 0.
Thus (a⊕a′)⊕(b⊕b′) = 0. So, either (a⊕a′) = (b⊕b′) = 0 or (a⊕a′) = (b⊕b′) = 1.
In the first case, the probability is:

Pr((a = a′) ∩ (b = b′)) = Pr(a = a′) · Pr(b = b′) (independence)
= pq.

In the second case, the probability is

Pr((a �= a′) ∩ (b �= b′)) = Pr(a �= a′) · Pr(b �= b′) = (1− p)(1− q).

(2) For i = 1 since a and b are single bits, so s1 and s′1 are basically the carries generated in
the previous sums. So, we find out the possible ways of generation of a different carry
in a + b and a′ + b′.

(a) Event 1 one of (a, b) and (a′, b′) is (0, 0) and the other one is (1, 1). In this case, the
tuple (1, 1) generates a carry 1, but (0, 0) does not. So, si �= s′i . Now, the probability
of this event we calculate in the following way.
We first focus on the tuple (a, b). The probability that it takes the value either (0, 0)
or (1, 1) is 1

2 , since there are total four possible options. Once this value is assigned,
(a′, b′) must choose the other possible value. This means, a′ must not be equal to a
and b′ must not be equal to b. This probability should be (1− p)(1− q). Therefore,
the probability of this whole event is 1

2 (1− p)(1− q).
(b) Event 2 a = a′ = 1 and b �= b′. In this case, one of the tuples (a, b) and (a′, b′) is

(1, 1), which generates carry 1, and the other one is (1, 0), which generates carry 0.
Now, Pr(a = a′ = 1) = Pr(a = a′) · Pr(a = 1) = p · 1

2 = p
2 . Then, Pr(b �= b′) =

(1− q). Therefore, the probability of this event is p
2 (1− q).

(c) Event 3 b = b′ = 1 and a �= a′. This event is similar to the previous one. By similar
arguments it can be shown that the probability is q

2 (1− p).
These three events are mutually disjoint and other than these three events there is no
way of producing si �= s′i . Therefore the probability of si �= s′i is the sum of these
three probabilities, which is

1

2
(1− p)(1− q)+ p

2
(1− q)+ q

2
(1− p) = 1− pq

2
.

Therefore, the probability of equality can be given by 1−
(
1−pq
2

)
= 1+pq

2 .

�	

123

Proving the biases of Salsa and ChaCha in differential attack

Now, let us generalise this result little bit further. Suppose a, b, a′, b′ are not single bit
numbers. We focus on some i th bit of them. Suppose we know the correlation between the
corresponding bits of a and a′ (and similarly for b and b′). The question is whether we can
find a probabilistic relation between the i th bit of s and s′. One important point that we have
to keep in mind is that the i th bits of s depends not only on ai and bi , but also on the carry
produced from the previous bits. Suppose, by ci and c′i we denote the carries generated at
(i−1)th bits of s and s′ respectively, which are to be added in the i th bit. So, si = ai ⊕bi ⊕ci
(same for s′). So, the probability of the equality of the carries ci and c′i plays a vital role in
this case. In this context, we find the relation between Pr(ci+1 �= c′i+1) and Pr(ci �= c′i).

Theorem 2 Suppose a, b be two independent and randomly chosen n-bit numbers. Let a′, b′
be n-bit numbers such that for all i = {0, 1, . . . , (n − 1)}, Pr(ai = a′i) is given by pi and
Pr(bi = b′i) is given by qi . Suppose s = a + b and s′ = a′ + b′. Then,

Pr(ci+1 �= c′i+1) = Pr(ci �= c′i) ·
(
1− pi + qi − piqi

2

)
+ Pr(ci = c′i)

(1− piqi)

2
.

Proof Suppose ci �= c′i .Without loss of generality, let us assume that ci = 1 and c′i = 0. Let
us find the possible cases where ci+1 and c′i+1 are different.
Event 1 one of (ai , bi) and (a′i , b′i) is (0, 0) and the other one is (1, 1). If (ai , bi) = (1, 1)
and (a′i , b′i) = (0, 0), then ai + bi + ci = 3, which generates a carry 1. On the other side,
a′i + b′i + c′i = 0, which generates carry 0. Therefore ci+1 �= c′i+1.

If (a′i , b′i) = (1, 1) and (ai , bi) = (0, 0), then ai + bi + ci = 1, which generates carry 0 and
a′i + b′i + c′i = 2, which generates carry 1. Therefore, again ci+1 �= c′i+1.

The probability of this event is (1−pi)(1−qi)
2 , as computed in the previous theorem.

Event 2 (ai , bi), (a′i , b′i) ∈ {(0, 1), (1, 0)} and (ai , bi) = (a′i , b′i). In this case,ai+bi+ci = 2,
which generates carry 1 and a′i +b′i + c′i = 1,which generates carry 0. So, ci+1 �= c′i+1. The
probability of this event can be calculated as Pr(ai = a′i) · Pr(bi = b′i) · Pr(ai �= bi) = pi qi

2 .

Event 3 (ai , bi), (a′i , b′i) ∈ {(0, 1), (1, 0)} and (ai , bi) �= (a′i , b′i). Similar to the previous
event, one can easily verify that in this event ci+1 �= c′i+1. Also, by similar arguments as the

previous event, the probability can be calculated as (1−pi)(1−qi)
2 .

Event 4 ai = a′i , bi = 1, b′i = 0. In this case, ci + ai + bi ≥ 2, which gives a carry 1. On
the other hand, c′i + a′i + b′i can be at most 1, which gives a carry 0. The probability of this

event is pi
1−qi
2 .

Event 5 bi = b′i , ai = 1, a′i = 0. This can also be computed similarly as event 4. Probability

of this event is qi
1−pi
2 .

These five events are mutually disjoint. So, given ci �= c′i , the total probability of the event
(ci+1 = c′i+1) can be computed by adding them. This sum is 1− pi+qi−pi qi

2 .

On the other hand, if (ci = c′i), then both of them can be either 0 or 1. If 0, then we can treat

ai , bi , a′i , b′i like the least significant bits as in Theorem 1. So, the probability is 1−pi qi
2 .

Similarly, if both the carries are 1, it can be shown similarly that the probability is (1−pi qi)
2 .

So, the total probability of Pr(ci+1 �= c′i+1) can be calculated as

Pr(ci �= c′i) ·
(
1− pi + qi − piqi

2

)
+ Pr(ci = c′i)

(1− piqi)

2
.

�	
Theorem 3 Consider a, b, a′, b′ as the n-bit numbers similar to Theorem 2. Also, s, s′, c j
and c′j are as mentioned. Now, suppose at the i th bit, ci �= c′i . The probabilities Pr(ai = a′i)

123

S. Dey, S. Sarkar

and Pr(bi = b′i) are given by p and q, respectively. Then, the probability that the i th bits of
the sums s and s′ match is p(1−q)+q(1− p).On the other hand, if ci = c′i , this probability
is pq + (1− p)(1− q).

Proof Without loss of generality, let us assume that ci = 1 and c′i = 0. Now, si = ai ⊕ bi ⊕
ci = ai⊕bi⊕1 and s′i = a′i⊕b′i⊕c′i = a′i⊕b′i .Therefore si = s′i implies ai⊕bi⊕a′i⊕b′i = 1.
Therefore,

(1) either ai ⊕ a′i = 0 and bi ⊕ b′i = 1,
(2) or ai ⊕ a′i = 1 and bi ⊕ b′i = 0.

Probability of the first event is Pr(ai = a′i)·Pr(bi �= b′i) = p(1−q). Similarly, probability
of the second event is q(1− p).
Adding these two probabilities, we get the desired result. If ci = c′i , the result can be proved
in a similar manner. �	
Lemma 2 a = a31a30a29 · · · a0 and b = b31b30b29 · · · b0 be two independent arbitrarily
chosen numbers of 32 bits. Let b′ = b′31b′30b′29 · · · b′0 be a number which differs at exactly m
consecutive bits (say at the bit position n, n + 1, . . . n + m − 1, n + m − 1 ≤ 31) from b.
Consider S = a+b mod 232 and S′ = a′ +b′ mod 232. ci and c′i are the carries generated
at the (i−1)th bit in S and S′, respectively. Then for any k > 0 such that (n+m−1)+k ≤ 31,
the probability that cn+m−1+k and c′n+m−i+k will differ is

1
2k
.

Proof We prove it by induction onm. Form = 1 it is true from Lemma 1, because the n+kth
bit of S and S′ can differ only if cn+k and c′n+k differs, since bn+k = b′n+k .

Let us assume that it is true for some m = r . We prove it for m = r + 1. So,
bi �= b′i for i ∈ n, n + 1, . . . , n + r . Since the statement is true for m = r , for the block
bn+r−1bn+r−2, . . . , n, we can say that the carry cn+r and c′n+r differs with probability 1

2
(taking k = 1). Now, we apply Theorem 2, where i = n + r , pi = Pr(ai = a′i) = 1, qi =
Pr(bi = b′i) = 0 and get Pr(cn+r+1 = c′n+r+1) = 1

2 . So, for k = 1 the result is proved. For
the next bits, since bi = b′i , we can apply the technique of Lemma 1 and get the result. �	

4 Few points about the proof

In the next three sections, we provide theoretical explanation of respectively the bias for
Salsa, bias for ChaCha and a probabilistically neutral bit. In this procedure we track the
propagation of the difference at each round along with the corresponding probability. Before
proceeding to the proof, in this section we declare several facts regarding our methods of the
proofs.

(1) The events (Xi [j] = X ′
i [j]) and (Δi [j] = 0) are basically the same. Though it is a

very clear observation, we mention it for the convenience of the reader since both the
notations have been used in our proofs. Such events appear repeatedly in our proofs.
For convenience we denote the probability of such event by P(i, j). In general, for any
two 32-bit numbers a and a′, by P(a, j) we denote the probability Pr(a j = a′j), i.e., the
probability that j th bit of a and a′ bit are equal.

(2) Initially,P(7,31) = 0 and for any other bit (i, j),P(i, j) = 1.Now, it is expected that as the
algorithm progresses, the correlation between X and X ′ decreases, i.e., the probability
P(i, j) comes closer and closer to 0.5 and eventually becomes 0.5. So, one important
point is that our aim is to provide theoretical justification only wherever we observe

123

Proving the biases of Salsa and ChaCha in differential attack

some bias. This means, in the tracking of the difference propagation, if for any bit we
observe that the unbiasedness is already attained, obviously we do not attempt to justify
this probability mathematically. For example, suppose we experimentally observe that
after a few rounds of Salsa or ChaCha, for some bit (i, j), P(i, j) = 1

2 , i.e., there is no
bias. Therefore we do not attempt to prove this probability theoretically.

(3) While computing the probability of an event, unless the probability is a rational number,
we write it up to two decimal places or at most three decimal places (in few cases). Only
in some cases where the probability is a rational number we go beyond three decimal
places to write the exact value.

(4) Weprove our results based on themathematical results proved in Sect. 3,which are based
on the assumption of independence and randomness of the numbers. In reality, for both
Salsa and ChaCha, though in the initial matrix the independence and randomness is true,
as the algorithm progresses, we can’t claim the independence to hold in every step. How-
ever, in our proofs wherever we use these results, we assume this independence. In most
of the cases the theoretical results match very well with the experimental observations.
In a few instances where this assumption of independence did not give very accurate
results, we prove the results in a different way (for example, Lemma 5, ChaCha).

(5) There are several cases where multiple results have exactly similar proofs. In such cases
we avoid repeating the detailed proof and just refer to the theoremwith the similar proof.

(6) We explain here the meaning of a few terms or phrases which we use in our proofs.

– “Containing a difference” when we say that the cell/word Xi contains a difference
at position j, we mean that at that stage Xi [j] �= X ′[j], or Xi [j] ⊕ X ′

i [j] = 1.
– “Transmission/transmit” when a cell/word is updated, if any of the cells involved in

the procedure contains a difference, a difference can generate in the updated cell also.
We call this the “transmission” of difference. For example: suppose Xa is updated
as: Xa = Xa ⊕ Xb. Now suppose, before the update, Xa = X ′

a, but the pth bit of
Xb is different from and X ′

b. Then after the operation, the updated Xa and X ′
a will

have a difference at the pth bit. In such case we say that the difference is transmitted
from Xb to Xa .

– “Propagation of difference” suppose we add two cells/words, say Xa and Xb. Now,
Xa = X ′

a .Between Xb and X ′
b, all the bits except the pth bit are equal, but the pth bit

is different. In the sum Xa + Xb and X ′
a + X ′

b, the pth bit would surely be different.
But due to the carry generated in the sum, the (p + 1)th can also be different. We
call this “propagation of difference”.

5 Proof of the forward bias of Salsa

In this section we prove the forward bias for Salsa, i.e., the probability that with the input
difference at position (7, 31), after four rounds the bit (1, 14) of X and X ′ matches, which
is experimentally observed to be approximately 0.56.

5.1 First round

In the first round, at first we calculate P(15,0) = Pr(X15[0] = X ′
15[0]). In that context, we

have the following result.

123

S. Dey, S. Sarkar

0.0

0.5

0.75

0.875

1.0

P :

31

12

c :

d :

c+ d

151 41 31 231

(c+ d) ≪ 18

.

011713 03

Fig. 1 Differential propagation during the operation (c + d) ≪ 18

Lemma 3 After the completion of the first round, the probability that the 0th bit of X15 and
X ′
15 matches is 0.75.

Proof In the columnround operation on the last row of X , we have:

(a, b, c, d) = (X15, X3, X7, X11).

The input difference is given in the 31st bit of X7. Since in the quarterround function b (here
X3 and X ′

3) is updated first, and c (here it is X7) is not involved in the update function of b,
there is no difference between X3 and X ′

3 after the update, i.e., X3 = X ′
3.

In the next step, c (X7 and X ′
7) is updated. It involves the variables a and b,which are X15 and

X3, respectively. Both of them are the same for X and X ′ so far. Therefore, these variables do
not bring any difference between X and X ′. The only difference is caused by the XOR of c,
which is X7. So, after the update X7 and X ′

7 have only one difference, which is at the 31st bit.
d = d⊕((c + b)≪13) in the update of d, the involved variables are d, c, and b. Now,
d = X11 and b = X3 do not have any difference between X and X ′. c has difference at the
31st bit. So, in the addition c + b, exactly one difference is there between X and X ′, which
is at the 31st bit. After the rotation by 13 bits, that difference comes at the 12th bit. So, X11

and X ′
11 has only one bit difference, which is at the 12th bit.

a = a⊕((d + c)≪18) in the final update, a has no difference between X and X ′. d has a
difference at the 12th position, and c has difference at 31st. In the sum c + d, difference
will be at the 12th and 31st bit. But, since this is an addition operation, the difference at
the 12th bit may propagate to the next bit. The probability of this propagation we calculate
using Lemma 1. Here, n = 12, k = 2, n + k = 14. So, the probability of the propagation is
1
22

= 1
4 . After left rotation by 18 bits, this difference comes to the 0th bit. So,

P(15,0) = Pr(X15[0] = X ′
15[0]) = 1− 1

4
= 0.75.

�	
In the following Fig. 1, we present how the difference propagates during the operation

(c + d) ≪ 18. Let us denote the probability Pr(c j = c′j) by Pc, j , Pr(d j = d ′j) by Pd, j

and Pr((c + d) j = (c′ + d ′) j) by Pc+d, j . The two blocks on the left represents the 32-bit
numbers c and d. Each box represents a bit position. The probability of the equality of a
bit is represented by the color of its corresponding box. The bit positions where there is no
difference, i.e., the probability of equality (P) is 1, are colored white. The bits in which there

123

Proving the biases of Salsa and ChaCha in differential attack

X3

X7

X11

X15

31 31 31 31

b = b ⊕ ((a + d) ≪ 7)

c = c ⊕ ((b + a) ≪ 9)

d = d ⊕ ((c + b) ≪ 13)

12 12

a = a ⊕ ((d + c) ≪ 18)
. . .

3130 17 10

Fig. 2 Differential propagation in the first round on the last column of Salsa

is a difference, i.e, P = 0, are colored dark black. Bits where the probability is between 0
and 1, are represented by grey of different darkness. As the value increases, the darkness of
the grey gradually decreases, turning towards white. The value of P for each color is given
in the figure.

Initially, only the 31st bit of c and 12th bit of d contains the difference. So, those positions
are colored black. All the other bits are white. After the addition, the difference is there in
the 31st and 12th bit of (c+ d), i.e., Pc+d, j = 0 for j = 12, 31.Moreover, the difference at
the 12th bit propagates to the next bits with probability 1

2k
. So, Pc+d,12+k = 1− 1

2k
, which

has been represented up to 3 bits in the picture by the grey colors of different darknesses. In
the next step the rotation takes place and each of the bits rotated by 18 bits to the right.

Figure 2 represents the propagation of the difference during the first round of Salsa. The
four blocks in each column represents (X3, X7, X11, X15). The initial difference is at (7, 31)
which is colored black. The first column in the figure represents the initial situation. The
second column represents the situation after first two steps of quarterround. The third and
the last column represents the situation after third and fourth step respectively. In the last
block of the last column, the dots represent the fact that the propagation has not stopped at
the 1st bit, rather continues to the next bits. The colors of the boxes represent the value of
the probability P as already given in the Fig. 1.

5.2 Second round

In the second round, we prove a few small but important results which we will use later.

Lemma 4 After the completion of the second round, we have the following results:

(1) P(11,0) = 1.
(2) P(4,i) = 1, for all i < 12.
(3) P(12,24+i) = 1− 1

2i
, for 0 ≤ i ≤ 7. Also, P(12,i) = 1− 1

28+i , for i = 0, 1.

Proof (1) In the third row, we have (a, b, c, d) = (X10, X11, X12, X13). In the first step, we
have:

b = b ⊕ ((a + d) ≪ 7).

Here,a and d have no difference in X and X ′, because after the first round, the propagation
of the difference is within the fourth column only. So, the only difference can be produced
by the XOR of b, which has only one difference at the 12th bit. Therefore, the 0th bit is
not affected by this operation.

(2) In the second row, we have (a, b, c, d) = (X5, X6, X7, X4). In the first round, the cell
X4 is not affected by the propagation of the input difference, since the propagation stays

123

S. Dey, S. Sarkar

0.0

0.5

0.75

0.875

1.0

P :

17

X14 :

X15 :

X14 +X15

02 91 81 71

(X14 +X15) ≪ 7

.

72 62 52 42

Fig. 3 Differential propagation during the operation (X14 + X15) ≪ 7 according to Lemma 4

within the fourth column only. In the second round, the first step is X6 = X6 ⊕ ((X5 +
X4) ≪ 7). This does not involve X7, so there is no propagation of bias. Now

– X7 = X7 ⊕ ((X6 + X5) ≪ 9) : only X7 contains a difference at 31st bit. So, after
the update, the difference would be there at the 31st bit only.

– X4 = X4 ⊕ ((X6 + X7) ≪ 13) : in this operation, since X7 has a difference at
the 31st bit, it brings difference in the 12th bit of X4 (because of the left rotation by
13 bits). The bits on the left side of the 12th bit are also affected probabilistically
because of the carry propagation. But, the bits which are on the right side of 12th bit
are not affected by the difference by this operation. Therefore, even after completion
of the second round, we have X4[i] = X ′

4[i], for all i < 12.

(3) In the first round, X12 = X ′
12. In the second round, it is updated by the function:

b = b ⊕ ((a + d) ≪ 7),

where a, d are respectively X15 and X14 from the 1st round. The 17th bit of X15 contains
a difference. On the addition X15 + X14, this difference come to the 17th bit of the
sum and propagates to the next bits with the probability 1

2i
. So, using Lemma 1, for

the probability that the (17 + i)th bit of the sum X15 + X14 would be equal to that of
X ′
15 + X ′

14 is 1− 1
2i
. These bits gets rotated by 7 bits and XORed with X12. So, the 17th

bit shifts to the 24th bit. The 25th bit shifts to the 0th bit. Therefore the result follows. A
pictorial representation of the sum and rotation of (X14 + X15 ≪ 7) is given in Fig. 3.

�	

5.3 Third round

Nowwe provide the proofs of some biases that we observe in the third round. In these proofs,
we are going to use the results obtained in the first and second round. The third round is a
columnround. We prove a few results for the first, second and fourth column.

5.3.1 First column

In this column, the tuple (a, b, c, d) is (X0, X4, X8, X12).We have the following results.

123

Proving the biases of Salsa and ChaCha in differential attack

0.0

0.5

0.625

0.75

0.875

1.0

P :

72 62 52 42

X0 :

X12 : . . .

X0 +X12

82 72 62 52 42

(X0 +X12) ≪ 7

.

012331

Fig. 4 Differential propagation during the operation (X0 + X12) ≪ 7 according to Theorem 4

Theorem 4 After the third round,

P(4,i) =
⎧⎨
⎩

1
2 f or i = 0,
5
8 f or i = 1,
1− 1

2i
f or 2 ≤ i ≤ 8.

Proof In the third round X4 is updated by the function

X4 = X4 ⊕ ((X0 + X12) ≪ 7),

where X4, X0 and X12 are from the second round. We focus on the sum (X0 + X12).

Now, since X0 is on the first row, it is not affected by the propagation up to the 2nd round
because after the first round no cell of the first row is affected by the difference. Therefore
we only focus on X12. From Lemma 4 in the second round, we know, P(12,24+i) = 1− 1

2i
.

In the sum X0+ X12, for some (24+ i)th bit (i ≥ 0) we try to find Pr((X0+ X12)[24+ i] �=
(X ′

0 + X ′
12)[24 + i]). Let us call this event Ai . For X12, let us call the event E j that the

difference has propagated up to the (24+ j)th bit and not further. So, E j ’s are disjoint and
Pr(E j) = 1

2 j − 1
2 j+1 = 1

2 j+1 .

So,

Pr(Ai) =
i−1∑
j=0

Pr(Ai |E j) · Pr(E j)+ Pr(Ai |
(⋃
j≥i

E j)
) · Pr (

⋃
j≥i

E j
)
.

From Lemma 1, Pr
(⋃

j≥i E j

)
= 1

2i
. From Lemma 2, Pr(Ai |E j) = 1

2 j−i and

Pr
(
Ai |⋃ j≥i E j

)
= 1

2 . Thus we get,

Pr(Ai) =

⎧⎪⎨
⎪⎩

1
2i

for i = 0, 1,
3
8 for i = 2,
1

2i−1 for i > 2.

Now, we compute Pr(Ac
i) for all three cases. Then, after rotation by 7 bits and XOR with

X4, these probabilities transmit to the positions X4[0], . . . , X4[8] respectively and we get
the result. �	

123

S. Dey, S. Sarkar

Theorem 5 After the 3rd round, P(12,21) ≈ 0.023.

Proof X12 is updated by the function:

d = d ⊕ ((c + b) ≪ 13),

where c and b are respectively X8 and X4. Since the rotation is by 13 bits, X12[21] is basically
the XOR of X12[21] (after the second round) and 8th bit of (X8 + X4). Here, X8 and X4 are
already updated up to the third round.

X12[21] after the second round this cell is unaffected in the first round. In the second round
it is updated by

b = b ⊕ ((a + d) ≪ 7),

where a, d are X15 and X14, respectively. So, we focus on the 14th bit of X15+X14.The only
difference can be created by the propagation of the difference of X15 at 0th bit (Lemma 3) and
next few bits, whose effect is negligible at 14th bit. Therefore, the probability of difference
is approximately 0. So, after the second round, P(12,21) ≈ 1.
(X8 + X4)[8] after third round up to the 2nd round, the 8th bit of X8 and X4 are not influenced
by the difference. In the third round, X8 is XORed with X4 + X0. Here, the 31st bit of X4

is different from X ′
4 with probability 1, because it was XORed with X7 in the previous step.

Therefore, 8th bit of X8 differs from X ′
8 with probability almost 1. This means, P(8,8) =

Pr(X8[8] = X ′
8[8]) ≈ 0. On the other hand, the probabilities P(4,i) for 0 ≤ i ≤ 8 we have

from Theorem 4. We ignore the carry difference coming from the bits on the right side of
the 4th bit. So, here we apply Theorems 2 and 3. We have pi = P(8,i) for i < 8 and p8 =
P(8,8) = 0. On the other hand, qi = P(4,i) = 1 − 1

2i
for 4 ≤ i ≤ 8. So, as in Theorem 3,

s = X4 + X8 and s′ = X ′
4 + X ′

8. Now, using Theorem 2 we compute Pr(c5 �= c′5). In this
context, since we ignore the carry differences coming from the bits on the right side of the 4th
bit, we assume Pr(c4 = c′4) = 1. After computing this, we use this result to find Pr(c6 �= c′6)
again using Theorem 2. In this way we proceed upto computing Pr(c8 �= c′8). Then we use
Theorem 3 to compute Pr(s[8] �= s′[8]), which comes to be 0.023.We do not show the step
by step calculation here. �	
Theorem 6 After the completion of the third round, P(0,7) ≈ 0.94.

Proof In the third round, X0 is updated by the function:

a = a ⊕ ((c + d) ≪ 18),

where c and d are X8 and X12, respectivelywhich are already updated in the third round. Since
the rotation is by 18 bits, the 7th bit of updated X0 can be given by: X0[7]⊕ (X8+ X12)[21].
Now, X0 = X ′

0 up to the second round. So, the difference in the updated X0 and X ′
0 can be

caused only by the difference of (X8+ X12)[21] and (X ′
8+ X ′

12)[21]. The probability of the
equality of these two bits can be found by partitioning it into two events:

(1) If there is no difference of the carry from previous bit.
(2) If there is difference in carry.

In the first case, the probability of equality can be found by Theorem 1, where p = P(12,21) =
0.023 (Theorem 5). This value is approximately 0.975.

Next we focus on P(8,21) to get q. In the second round, this bit is updated as d = d⊕ ((b+
c) ≪ 13),where b is X0 and c is X4. Since X0 is not influenced by the difference so far, we
focus on 8th bit of X4 (since the rotation is by 13 bits). This bit has a direct influence of the

123

Proving the biases of Salsa and ChaCha in differential attack

difference given in 31st bit of X7, which after rotation by 9 bits, reaches this position. So,
this bit is different with probability 1. So, in the 2nd round, P(8,21) = 0. In the third round,
one can check that the term (b + c) has influence over this position with very negligible
probability. Therefore, the probability q is approximately 0.
In the second case, the probability can be found by Theorem 3, which gives the probability
as approximately 0.
Nextwe find the probability of the difference of the carry. Though there are 20 bits on the right
side, we ignore the 19 bits of the right side since their influence is negligible and consider
only the 20th bit. So, the probability of equality of the carries can be computed by Theorem 2,
where p = 0.996, q = 0.95. Using the formula, we have the probability of equality of the
carries approximately as 0.97.
So, the total probability: 0.97× 0.975+ 0.03× 0 ≈ 0.94. �	

5.3.2 Second column

In this column, the tuple (a, b, c, d) is (X5, X9, X13, X1).We have one result in this column
that we are going to use in the proof of the final theorem in the fourth round.

Theorem 7 After the completion of the third round, P(1,14) = 0.96.

Proof In third round, X1 is updated by

d = d ⊕ ((b + c) ≪ 13).

Here, up to the second round, X1 (or d in the second round) is not influenced by the difference.
b and c are respectively X9 and X13 from the 3rd round. So,we focus on the 1st bit of their sum
(since the rotation is by 13 bits). Now, X13 is updated in the 2nd round by c = c⊕((a+b) ≪
9). In that update, on the 24th bit we focus, due to the rotation. Since the 19th bit contains a
difference during its update (can be checked very easily), this bit is affected with probability
1
25

(Lemma 1). So, the probability of equality is 1− 1
25

≈ 0.97.The differences in the addition
a + b in the third round do not bring any significant change in this probability.

By similar argument one can very easily check that P(9,1) ≈ 0.99. Therefore, the prob-
ability of the equality of 1st bit of (X9 + X13) can be given by 0.97 × 0.99 ≈ 0.96 (here
we ignore the probability of the difference in the carry from the previous bit, since it is
negligible). Therefore, the final probability of the given event is also 0.96. �	

5.3.3 Fourth column

Theorem 8 After the third round, P(3,7) = 0.75.

Proof (a, b, c, d) = (X15, X3, X7, X11). In the first step, X3 is updated by the function
b = b ⊕ ((a + d) ≪ 7). After the first round, the first row is not influenced by the
difference. Therefore in the second round, the rowround operation on the first row also does
not bring any difference. So, X3 and X ′

3 are exactly the same after the second round. Also,
from Lemma 4, we know that the 0th bit of X11 and X ′

11 are equal after the second round.
Therefore, the difference at 0th bit of a + d occurs iff the 0th bit of a has the difference.
Therefore, the probability of the equality in the least significant bit of a + d for X and X ′
is equal to the difference at the least significant bit of a i.e., Pr(X15[0] = X15[0]), which is
0.75, from Lemma 3. Therefore, this probability is 0.75.

123

S. Dey, S. Sarkar

Now, after left rotation by 7 bits, this bit shifts to the 7th bit. And this is XORed with b,
which does not have any difference. Therefore, the probability that the 7th bit of the updated
b is equal for X3 and X ′

3 is 0.75. �	

5.4 Fourth round

Now we prove the final result which gives us the single bit output bias observed in the fourth
round of Salsa.

Theorem 9 After the fourth round, P(1,14) ≈ 0.56.

Proof In the rowround on the first row of X , we have:

(a, b, c, d) = (X0, X1, X2, X3).

So, b = X1 is updated at first. We focus on the 14th bit of X1 and X ′
1. Let us denote the 14th

bit of b as b[14]. So b[14] = b[14] ⊕ ((a + d)[7]) (since the 7th bit of a + d is left shifted
by 7 bits and reaches the 14th bit position).

Let us first focus on the 7th bit of a + d. The probability of the equality of this bit can be
computed for two separate cases:

(1) If there is no difference in the carry from the previous bit.
(2) If there is difference in the carry.

Event 1 if there is no difference in the carry, the probability of equality at (a + d)[7] can
be calculated by the formula derived from Theorem 1, which is pq(1 − p)(1 − q). Here,
p = 0.94 (Theorem 6). In the 3rd round, X3 is updated by b = b⊕ ((a + d) ≪ 7). So, the
7th bit of X3 can be given by XOR of the previous X3 and the 0th bit of X11 and X15. Since
the 0th bit of X3 and X11 are unaffected by the difference up to the second round, so the
difference can only transmit from the difference at X15. Now, the 0th bit of X15 possesses
equality with probability 0.75 after the first round (Lemma 3). It remains the same after the
second round since in this rowround all the other key cells involved are not influenced by
the difference. So, the probability is q = 0.75. So, the probability of the equality if there is
difference in the carry is (0.94× 0.75+ 0.06× 0.25) = 0.72.
Event 2 if there is difference in the carry, the probability can be calculated by the formula from
Theorem 3, which is p(1−q)+q(1− p). So, the probability is: (0.94×0.25+0.06×0.75) =
0.28.

Now, we find the probabilities of events 1 and 2. Here, we take into consideration the
carry coming from the immediate previous bit (6th bit) and ignore the bits which are prior to
the 6th bit. We experimentally observe that in d, the 6th bit does not possess any bias, i.e.,
Pr(X3[6] = X ′

3[6]) = 1
2 . Therefore, as already mentioned in the beginning of this section,

we do not attempt to prove this probability. Rather we use this result directly in our proof.
Suppose q6 is the probability that the 6th bits of d (X3 and X ′

3) are equal. So, q6 = 1
2 .

Therefore, we can use Theorem 2 here. By a similar argument as in the proof ofP3,7 = 0.94,
it can be proved that p6 = P3,6 = 0.9. Since we ignore the bits on the right side of of the
6th bit, Pr(c6 �= c′6) = 0. Therefore, according to the formula of Theorem 2, the probability
that there is difference in the carry in the 7th bit is: Pr(c7 �= c′7) = 1

2 − 0.9
4 ≈ 0.28. And

the probability that there is no difference in the carry is 1− 0.28 = 0.72. So, calculating the
total probability, we get 0.59.

Next, this bit is XORed with b[14]. The probability that b[14] differs is 0.96, from Theo-
rem 7. So, the final probability can be given by the formula (pq+(1− p)(1−q)) (Theorem1),
where p = 0.96 and q = 0.59. So, we have the probability approximately as 0.56. �	

123

Proving the biases of Salsa and ChaCha in differential attack

Table 1 Comparison between theoretical and experimental results

Output bits Theoretical result Experimental result Chosen IV experimental result [14]

X1
15[0] 0.75 0.75 1.0

X3
4[8] 0.998 0.996 0.997

X3
12[21] 0.023 0.022 0.021

X3
0[7] 0.94 0.95 0.95

X3
1[14] 0.96 0.98 0.98

X3
3[7] 0.75 0.74 0.93

X4
1[14] 0.56 0.56 0.62

Therefore, now we have the detailed theoretical structure of this bias. In Table 1, we
provide a comparison between the probabilities achieved theoretically and by experiment
side-by-side in second column and third column, respectively. We perform experiment over
10,000 random key-IV pairs to produce this result. In [4], a special technique has been used
to construct multiple bit output bias in the fifth round from a single bit output bias of the
fourth round. The technique of this construction itself is the theoretical justification of this
extension of distinguisher in the 5th round. Therefore for the 5th round distinguisher, no
further theoretical justification is required. However, the position of the input difference and
the observed output bit was different in that work. They gave the input difference at the 0th
bit of X7. The single bit output difference in fourth round they observed at (1, 13), i.e., 13th
bit of X1. From that they constructed a multibit output difference in the fifth round by the
XOR of X1[13], X9[0], X9[0].The theoretical explanation of that work can also be explained
similarly in this way.
Chosen IV cryptanalysis in [14], Maitra improved the bias for the same input–output pair by
suitably choosing the IV’s.Using this idea, he improved the probability Pr(X1[14] = X ′

1[14])
to 0.62. This probability can also be theoretically proved by our approach. The tracking of
the biases will be exactly similar, the only difference being that the biases would be higher
in this case. For example, in the first round, the probability Pr(X15[0] = X ′

15[0]) would
become 1, instead of 0.75 (Lemma 3). The propagation of the difference produced by the
carry is restricted by suitably choosing the IV so that the propagation does not occur. In this
way, all the proofs in the propagation of difference can be given by the similar approach as
in our paper and can be shown that the probability becomes 0.62. In Table 1, we provide the
experimental probabilities based on 10,000 random key-IV pairs for chosen IV in the last
column, which gives a clear idea about how the difference propagates.

6 Proof of the forward bias of ChaCha

For ChaCha, the input difference is given at the position (13, 13) and the output difference
is observed after 3 rounds at the position (11, 0). The observed probability is 0.51. In the
similar manner as Salsa, we follow the propagation of the bias in each round and prove them.

6.1 First Round

Lemma 5 After the completion of the first round, we have the following results.

123

S. Dey, S. Sarkar

(1) P(9,29+i) = 1− 1
2i
, for i = 0, 1, 2,

(2) P(13,20+i) = 1− 1
22+i , for 0 ≤ i ≤ 11,

(3) P(5,4+i) ≈ 1− 1
2i
, for i = 0, 1, 2,

(4) P(5,24) ≈ 0.0,
(5) P(5,27) ≈ 0.66,
(6) P(5,28) ≈ 0.78,
(7) P(5,12) ≈ 0.0.

Proof Since the initial difference is at the second column at position (13, 13), after the first
round only the second column gets affected. Now, in the quarterround function, we have:

(a, b, c, d) = (X1, X5, X9, X13).

In the first addition between X1 and X5, no term containing any difference is involved. Then,
in the operation X13 = ((X13 ⊕ X1) ≪ 16), the difference shifts to the 29th bit of X13 due
to the rotation. Afterwards, we track the propagation of the difference step by step.
X9 = X9 + X13 the 29th bit of X9 receives the difference from X13. Also, the difference
propagates to the next bits of X9 with probability 1

2k
as given in Lemma 1. However, the

probabilities of differences at these three positions are not independent. Any one of these
would possess the difference only if the previous one do, since the difference cannot propagate
to the next bit if the previous bit does not have difference. So, we can’t use Theorem 2 or 3
directly here. So we prove it as follows:

If we consider the differences at the three positions as a tuple (Δ9[31],Δ9[30],Δ9[29]),
it can have only three possible values: (0, 0, 1), (0, 1, 1) and (1, 1, 1). The probabilities of
occurrences of these values are as follows:

– (0, 0, 1) : 1
2 , since it occurs whenever the difference at the 29th bit does not propagate

to the 30th bit, i.e, (c30 = c′30).
– (0, 1, 1) : 1

4 .This occurs when (c30 �= c′30) but (c31 = c′31). So, the difference propagates
from the 29th to the 10th bit, which has probability 1

2 . And then the difference does not
propagate to the 11th bit, which has again probability 1

2 . Since the values at the 30th bit
are independent of the values at 29th bit, the probability is 1

4 .

– (1, 1, 1) : 1
4 .When both (c30 �= c′30) and (c31 �= c′31), i.e., the difference propagates from

the 29th to the 30th and then to the 31st. Therefore, again the probability is 1
2 × 1

2 = 1
4 .

Therefore, we have: Pr(X9[29+ k] = X ′
9[29+ k]) = 1− 1

2k
for k = 0, 1, 2.

X5 = (X5⊕X9)≪12 due to the XOR and rotation, the differences are formed at the 9th,
10th and 11th bit of X5 with the same probability, i.e., Pr(X5[9+ k] = X ′

5[9+ k]) = 1− 1
2k

for k = 0, 1, 2.

Pr(X5[9+ k] = X ′
5[9+ k]) = 1− 1

2k
for k = 0, 1, 2. (1)

The propagation of the difference up to this stage, i.e., the half round of the first round of
ChaCha is represented in Fig. 5. The colors of the boxes represent the value of the probability
P as already given in Fig. 1.
X1 = X1 + X5 X1 is not yet influenced by the difference. On the other hand, X5 has been
affected by the difference on the 9th, 10th and 11th bit as we have just proved.

If we consider the differences at these three positions as a tuple (Δ5[11],Δ5[10],Δ5[9]),
it can have only three possible values: (0, 0, 1), (0, 1, 1) and (1, 1, 1).We denote these three

123

Proving the biases of Salsa and ChaCha in differential attack

X1

X5

X9

X13

13

a = a + b

d = ((d ⊕ a) ≪ 16)

29 29 29

c = c + d

29

b = ((b ⊕ c) 12)

9

Fig. 5 Differential propagation in the first half round of ChaCha

events as E1, E2, E3. The probabilities of occurrences of these values are as follows:

(0, 0, 1) : Probability=0.5,
(0, 1, 1) : Probability=0.25,
(1, 1, 1) : Probability=0.25.

⎫⎬
⎭ (2)

Our aim is to find the probability of the updated Δ1[i] = 0 for i = 9, 10, 11 and 12. It
is clear that Pr(Δ1[9] = 0) = 0. Now, (Δ1[12],Δ1[11],Δ1[10]) can have 23 = 8 possible
values. For each of the three events E1, E2 and E3 in Eq. (2), we find the probability for
each of the eight possible values of the tuple (Δ1[12],Δ1[11],Δ1[10]). Let us denote them
by a1, a2, . . . , a8 and the corresponding events that (Δ1[12],Δ1[11],Δ1[10]) = ai by Ai .

Now, for each of the 8 values, we compute Pr(Ai) as
∑3

j=1
Pr(E j) · Pr(Ai |E j).We do not

show the detailed calculations here, but directly write the result as given below (Fig. 4).

0.3437 for (0, 0, 0)
0.2187 for (0, 0, 1)
0.0625 for (0, 1, 0) and (1, 1, 0)
0.125 for (0, 1, 1) and (1, 1, 1)
0.0313 for (1, 0, 0) and (1, 0, 1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3)

From this, we get can the total probability of occurrence Δ1[i] = 0 for i = 10, 11, 12
by adding the probabilities of the suitable tuple values. So, we have: Pr(Δ1[i] = 0) =
0, 0.5, 0.625 and 0.75 for i = 9, 10, 11, 12, respectively. From i = 12 onwards, since there
is no more differences in X5[i], so the difference propagates according to Lemma 1. So
Pr(Δ1[12+ i] = 0) = 1− 1

22+i for i > 0.
X13 = (X13⊕X1)≪8 the corresponding bits (which are discussed above for X1) of X13

did not have any influence of difference before. So, they receive the same probability as in
X1. After that, the bits are rotated by 8 bit positions. So, we have: Pr((Δ13[17]) = 0) = 0,
and the probabilities for all possible values of the tuple (Δ13[20],Δ13[19],Δ13[18]) are the
same as Pr(Δ1[12],Δ1[11],Δ1[10]) as given in the last proof (Eq. (1)). Therefore, we have
P(13,18) = 0.5,P(13,19) = 0.625 and P(13,20+i) = 1− 1

22+i .

Also, the difference at the 29th bit of X13 reaches the 5th bit by rotation. So, after this step,

P(13,5) = 0. (4)

X9 = X9 + X13 we already know the probabilities of the possible values of the tuple
(Δ9[31],Δ9[30],Δ9[29]) and therefore we have Pr(X9[29 + k] = X ′

9[29 + k]) = 1 − 1
2k

for k = 0, 1, 2. Since the corresponding bits of X13 are not yet influenced by the difference
propagation, in the updated X9, the probabilities remain the same. So,

P(9,29+i) = 1− 1

2i
for i = 0, 1, 2. (5)

123

S. Dey, S. Sarkar

Also, the difference at X13[17] transmits to X9[17] after this addition. For the bits 18 to
21, we calculate the probabilities for X9 by the same method as in the last one. We achieve:
P(9,20) ≈ 0.66, P(9,21) ≈ 0.78.

And the difference at (13, 5) transmits to the 5th bit of X9. So, P(9,5) = 0.
X5 = (X5⊕X9)≪7 the differences at the 29th, 30th and 31st bit of X9 transmits to X5 and
then after getting rotated by 7 bits, move respectively to the 4th, 5th and 6th bit of X5 with
the same probabilities. So, the probability distribution of the tuple (Δ5[4],Δ5[5],Δ5[6]) for
different values is same as the distribution of (Δ9[29],Δ9[30],Δ9[31]), which is basically
similar to (2).

P(5,4+i) ≈ 1− 1

2i
, for i = 0, 1, 2.

The difference at the 17th bit of X9 transmits to the 24th bit of X5. And the difference at the
20th and the 21st bit of X9 produces difference at the 27th and the 28th bit of X5, respectively.
Therefore, P(5,24) ≈ 0.0, P(5,27) ≈ 0.66, P(5,28) ≈ 0.78. The difference at X9[17] transmits
to X5 and then after getting rotated by 7 bit, moves to the 24th bit of X5.

The difference at (9, 5), after theXOR and rotation by 7 bits, transmit to (5, 12).Therefore
P(5,12) = 0. �	

6.2 Second round

Theorem 10 After the second round of ChaCha we have P(3,16) ≈ 0.99, P(3,15) ≈ 0.97.

Proof Wewill prove the result for X3[16] only and the other one follows exactly in the similar
manner.

(a, b, c, d) = (X3, X4, X9, X14).

In the second round, in the diagonal (X3, X4, X9, X14), at first the following operations take
place:

X3 = X3 + X4, X14 = ((X14 ⊕ X3) ≪ 16).

Here, since none of the cells contains difference, there is no propagation of difference. The
next step is:
X9 = X9 + X14 since X14 is not yet affected, P9,29+k remains the same, i.e, 1 − 1

2k
for

k = 0, 1, 2. After that, the operation is:
X4 = (X9⊕X4)≪12 since X4 previously had no difference, the only differences in the
updated X4 transmit from X9. Due to the rotation by 12 bits, those differences shift to the
9th, 10th and 11th bit. Therefore P(4,i) = Pr(X4[i] = X ′

4[i]) is approximately equal to 0, 1
2

and 3
4 for i = 9, 10 and 11 respectively.

X3 = X3 + X4 after this addition operation, the probabilities of the differences we will
calculate using Theorem 2. Let p j and q j in Theorem 2 are respectively P(3, j) and P(4, j).

Then p j = 1 for all j since X3 is not influenced by the difference yet. So, the formula of
Theorem 2 can be written as

Pr(ci+1 �= c′i+1) = Pr(ci �= c′i) ·
q j

2
+ Pr(ci = c′i)

(1− q j)

2
.

And we have q9 = 0, q10 = 1
2 , q11 = 3

4 and Pr(c9 �= c′9) = 0. Using this data, we compute
at first Pr(c10 �= c′10) = 1

2 , then Pr(c11 �= c′11) = 1
4 , and then Pr(c12 �= c′12) = 3

16 . From
j = 12 to 16, q j is also 1 because these are not influenced by the difference propagation.

123

Proving the biases of Salsa and ChaCha in differential attack

So, calculating Pr(c16 �= c′16) we get 3
256 . Since p16 and q16 are 1, by using Theorem 3

we can compute the probability of X3[16] = X ′
3[16] to be 253

256 , which is approximately
0.988 ≈ 0.99.

Using the exactly same method we can prove that P(3,15) ≈ 0.97. �	
Theorem 11 After the second round, P(15,16) ≈ 0.67.

Proof In the diagonal (X0, X5, X10, X15), only X5 is influenced by the difference after the
first round. In the first step of this diagonalround, we have the following operations.

X0 = X0 + X5; X15 = (X15 ⊕ X0) ≪ 16.

The 24th bit of X5 contains the difference (Lemma 5), which transmits to the 24th bit of X0

after this addition. Then it reaches the 8th bit of X15 after the XOR and rotation. So, after
this step,

P(15,8) = 0. (6)

From Lemma 5 in the first round, we know that the 4th bit of X5 differs from X ′
5. Also

the 5th and 6th bits of X5 and X ′
5 are equal with probability 0.5 and 0.75, respectively. If

we consider as a tuple, (Δ5[4],Δ5[5],Δ5[6]) has the probability distribution exactly similar
to (2) as follows:

(0, 0, 1) : Probability=0.5,
(0, 1, 1) : Probability=0.25,
(1, 1, 1) : Probability=0.25.

⎫⎬
⎭ (7)

For all three cases, we compute the probability of (X0[i] = X ′
0[i]) for i = 4 to 8 and then

find the total probability for each Xi . Those are as follows:

0.625 for 6th bit,

0.750 for 7th bit,

0.875 for 8th bit.

(8)

This propagation has been shown in Fig. 6.
On the other hand the 12th bit of X5 has a difference, which transmits to the same bit of X0.

So, P(0,12) = 0. After XOR with X15 and rotation, it transmits to the 28th bit of X15. The
next step is:

X10 = X10 + X15; X5 = (X5 ⊕ X10) ≪ 12.

On addition with X10, the difference transmits to the 28th bit of X10.

From Lemma 5 in first round, we know that P(5,27) = 0.66, P(5,28) = 0.78. After the
XOR and rotation, the difference carries to the 8th bit of X5. And we have

P(5,7) = 0.66,

P(5,8) = 1− 0.78 = 0.22.

}

X0 = X0 + X5; X15 = (X15 ⊕ X0) ≪ 16. (9)

After this addition, we find the probability of the event (Δ0[8] = 0). We consider one
previous bit, i.e., the 7th bits of X0 and X5. We have the corresponding probabilities from
Eqs. (8) and (9). Similar to the technique in the beginning of this theorem, we can say that
there can be three disjoint events:

123

S. Dey, S. Sarkar

0.0

0.5

0.625

0.75

0.875

1.0

P :

456

X0 :

X5 : . . .

X0 = X0 +X5

45678
. . .

Fig. 6 One of the differential propagations during the operation X0 = (X0 + X5) according to Theorem 4

(1) (Δ0[6] = 0 and Δ0[7] = 0) : probability 0.75.
(2) (Δ0[6] = 1 and Δ0[7] = 0) : probability 0.125.
(3) (Δ0[6] = 1 and Δ0[7] = 1) : probability 0.125.

Computing the probability of equality of the 8th bit of the updated X0 for each of these three
cases and adding them, we get the final probability as 0.333. This, after the XOR with X16

and rotation by 8 bits, reaches the 16th bit of X16. Since the 8th bit of X16 previously had
difference (Eq. (6)), the final probability is 1− 0.333 = 0.667 ≈ 0.67. �	

Theorem 12 After the second round,

P(7,i) =
{
0.94 for i = 15,

0.97 for i = 16.
(10)

Proof In the diagonal (X2, X7, X8, X13), the first step is:
X2 = X2 + X7: here, no cell are affected by the difference. The next step is:
X13 = (X13⊕ X2) ≪ 16. from Lemma 5, we have the probabilities of X13[k] = X ′

13[k]
for k = 22, 23, 24, 25 by the formula P(13,20+i) = 1− 1

22+i . According to this formula, we
have

P(13,i) = Pr(X13[i] = X ′
13[i]) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.937 for i = 22,

0.968 for i = 23,

0.984 for i = 24,

0.992 for i = 25.

(11)

After rotation by 16 bits, these bits move to the 6th, 7th, 8th and 9th bit. In the second step,
the following operation takes place:

X8 = X8 + X13.

We ignore the bits on the right side (less significant) of the 6th bit.
X8 is not influenced by the difference so far. Using Theorems 2 and 3, we find the probability
of (X8[i] = X ′

8[i]) for i = 8, 9 as follows:

123

Proving the biases of Salsa and ChaCha in differential attack

We have, pi = P(8,i) = 1 for i = 6, 7, 8, 9.

qi = P(13,i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.937 for i = 6,

0.968 for i = 7,

0.984 for i = 8,

0.992 for i = 9.

(12)

Since we ignore the carry difference coming from the previous bits, Pr(c6 = c′6) = 1. So,
using Theorem 2 we calculate Pr(ci �= c′i) for i = 7, 8, 9. These are 0.032, 0.03149 and
0.0235, respectively. Using this and the formula in Theorem 3, we calculate the probabilities
P(8,i) for i = 8, 9 to be approximately 0.95 and 0.97, respectively. After this, X13 is XORed
with X2 and rotation is performed. This X8 is later added with X13, but does not face any
significant change in the probabilities, since after the rotation in X13, the new bits of X13 at
the 8th and 9th positions are not influenced by the difference with any significant probability.
On the other hand P(7,i) for i = 8, 9 at this stage can be proved to be approximately 0.99
and 1 respectively, in exactly similar way we proved the probabilities P(3,15) and P(3,16) in
Theorem 10. We skip this proof here. Finally the XOR of X7 and X8 takes place. In this
XOR, the probabilities at the 8th and 9th bit we compute by the formula pq+ (1− p)(1−q)
as in Theorem 1. For the 8th bit, p = P(7,8) = 0.99 and q = P(8,8) = 0.95. So, pq + (1−
p)(1− q) = 0.94. Similarly, for the 9th bit, the value is 0.97. These bits, after rotation by 7
bits, reach our desired positions 15th and 16th, respectively. �	
Theorem 13 After completion of the second round P(7,12) = 0.75.

Proof In the diagonal (X2, X7, X8, X13), the first operation is:

X2 = X2 + X7; X13 = ((X13 ⊕ X2) ≪ 16).

After the first round, there is a difference at (13, 5). After this XOR and rotation by 16 bits,
that difference transmits to position (13, 21). After that, in the following addition,

X8 = X8 + X13,

the difference transmits to (8, 21) and propagates to the next bits with probability given in
Lemma 1. So, P(8,23) = 0.75, P(8,24) = 0.875 and P(8,25) = 0.9375.
These differences, after the step

X7 = ((X7 ⊕ X8) ≪ 12),

transmit to X7. So, we have P(7,3) = 0.75,P(7,4) = 0.875,P(7,5) = 0.9375.
On the other hand, from Theorem 5 in first round, we have the probabilities P(13,20) and

P(13,21). In the second round, during the operation X13 = (X13 ⊕ X2) ≪ 16, due to the
rotation by 16 bits, those differences with same probabilities transmit to the 4th and 5th bits
of X13. Then, the operation X8 = X8 + X13 takes place. We compute the probability P(8,5).

Before this operation, X8[4] and X8[5] were not influenced by the difference. So, we have:
pi = P(8,i) = 1 for i = 4, 5.
Now, q4 = P(13,4) = 0.75 and q5 = P(13,5) = 0.875. We ignore the bits on the right of the
4th bit. Now, using Theorems 2 and 3 we compute: P(8,5) = 0.79. This bit is added with the
same bit of X7 in the operation X7 = ((X7 ⊕ X8) ≪ 7) and after rotation reaches the 12th
bit position. So the corresponding probability can be found using the formula of Theorem 3
as:

p = P(8,5) = 0.79,

123

S. Dey, S. Sarkar

q = P(13,5) = 0.9375.

So, pq + (1− p)(1− q) ≈ 0.75, which is the probability P(7,12). �	

6.3 Third round

In the third round, we focus on the last column (X3, X7, X11, X15). The first half round is as
follows:

X3 = X3 + X7, X15 = ((X15 ⊕ X3) ≪ 16),

X11 = X11 + X15, X7 = ((X7 ⊕ X11) ≪ 12).

Theorem 14 After the half round in the 3rd round, we have the following results:

(1) P(3,16) = 0.92,
P(3,8) = 0.86,
P(3,24) = 0.68.

(2) P(15,0) ≈ 0.65
P(15,24) ≈ 0.75
P(15,i) = 0.62 for i = 11

= 0.77 for i = 12.

Proof (1) We prove the result for X3[16] only. The other two follow similarly. In this proof,
we consider the carry difference coming from the just previous bit (15th) and ignore the
previous bits. In the second round, from Theorem 10 we have the probabilities P(3,16) =
0.99,P(3,15) = 0.97.Also, from the last theorem (Theorem 12), we have the probabilities
P(7,16) and P(7,15) to be 0.97 and 0.94, respectively. From these information, using
Theorems 2 and 3, we can easily calculate this probability as shown below:

p15 = P(3,15) = 0.97,

q15 = P(7,15) = 0.94.

Since we ignore the carry difference from the previous bits, Pr(c15 = c′15) we assume to

be 1. So, from Theorem 2, Pr(c16 �= c′16) = 1−p15q15
2 = 0.044. Now, p16 = 0.99 and

q16 = 0.97. Therefore, from Theorem 3, we have P(3,16) = 0.92.
Similarly we can compute the probabilities P(3,24) and P(3,8).

(2) The bit X15[0] is the XOR of previous X15[16] and X3[16] (because of the rotation by
16 bits). So, using Theorem 11, we can find the probability from Theorem 3 as follows:

p = P(15,16) = 0.67 and q = P(3,16) = 0.93.

Therefore, pq + (1− p)(1− q) ≈ 0.65.
Similarly, in the second case, X15[24] is the XOR of X15[8] and X3[8]. So, in the same
manner, we find the probability using Theorem 11.We do not show the calculation again.
Similarly we can prove the results for X15[11] and X15[12] also.

�	
Theorem 15 After the half round in the third round, we have

(1) P(11,0) = 0.65,
(2) P(11,12) = 0.68,
(3) P(7,24) = 0.61.

123

Proving the biases of Salsa and ChaCha in differential attack

Proof (1) First we focus on X11[0]. Since this is the 0th bit, it is the XOR of the 0th bit of
X15 and X11. We have: P(11,0) = 1 (since it is not yet influenced by the difference).
P(15,0) = 0.65. (Theorem 14).
Therefore, again by the formula in Theorem 3, we can calculate the probability as fol-
lows: p = 0.99, q = 0.65 (as denoted in Theorem 3). Therefore, pq+ (1− p)(1−q) =
0.648 ≈ 0.65.

(2) For the second case, Pr(X15[i] = X ′
15[i]) for i = 11, 12 is known from Theorem 14.

Ignoring the carry coming from the previous bits, we calculate the probability based on
the 11th and 12th bit only. From Theorem 2, we have pi = P(11,i) = 1 for i = 11, 12
and
qi = P(15,i) = 0.62 for i = 11,

= 0.77 for i = 12.
Using Theorem 2 we get Pr(c12 �= c′12) = 0.19 and then using Theorem 3 we calculate
the desired probability P(11,12) = 0.68.

(3) X7[24] is the XOR of X7[12] and X11[12] which is rotated by 12 bits. We know the
probability of (X7[12] = X ′

7[12]) from Theorem 14. Therefore we can find the proba-
bility of this event using Theorem 3 as: p = P(11,12) = 0.68 and q = P(7,12) = 0.75.
So, pq + (1− p)(1− q) ≈ 0.61 = P(7,24).

�	
The next step is:

X3 = X3 + X7, X15 = ((X15 ⊕ X3) ≪ 8),

X11 = X11 + X15, X7 = ((X⊕X11) ≪ 7).

Theorem 16 After the completion of third round, P(11,0) = Pr(X11[0] = X ′
11[0]) ≈ 0.51.

Proof We have the probabilities P(3, 24) from Theorem 14 and P(7, 24) from Theorem 15.
Using this,we compute the the updatedP(3, 24)by the formula ofTheorem3.The probability
comes approximately as 0.55.

Next, X15 is updated.We focus on the 0th bit of X15. This bit is the XOR of 24th bit of X15
and X3, which then gets rotated by 8 bits. We already have P(3,24) ≈ 0.55. Theorem 14 tells
us that P(15,24) ≈ 0.75. Using Theorem 3 we can calculate these probability of the updated
(X15[0] = X ′

15[0]), i.e. P(15,0), which is approximately 0.53.
In the final step, we have:

X11 = X11 + X15 X7 = ((X7 ⊕ X11) ≪ 7).

We focus only on the addition between X11 and X15 because this gives us the final result.
Since we focus on the 0th bit, it is the XOR of 0th bit of X11 and X15.

X11[0] = X11[0] ⊕ X15[0].
The probability for X15[0] we have just calculated. For X11[0] we calculated in the last
theorem (Theorem 15). Therefore, we calculateP(11,0), the probability of (X11[0] = X ′

11[0])
again in the samemanner using Theorem 3. Here, p = 0.65, q = 0.53.Therefore, the desired
probability is: pq + (1− p)(1− q) ≈ 0.51. �	

Therefore, now we have the detailed theoretical structure of the forward bias in ChaCha.
In Table 2, we provide a comparison between the probabilities achieved theoretically and
by experiment side-by-side in the second and third column. Since for ChaCha we have so

123

S. Dey, S. Sarkar

Table 2 Comparison between the theoretical and the experimental results

Output bits Theoretical result Experimental result Chosen IV experimental result [14]

X2
3[15] 0.97 0.969 0.969

X2
15[16] 0.67 0.667 0.909

X2
7[16] 0.97 0.967 0.992

X2
7[12] 0.75 0.745 0.882

X2.5
3 [16] 0.92 0.923 0.964

X2.5
15 [0] 0.65 0.652 0.880

X2.5
11 [0] 0.65 0.652 0.875

X2.5
7 [24] 0.61 0.609 0.743

X3
11[0] 0.51 0.513 0.568

many theorems, we put only the major ones in the table. Similar to Salsa, for ChaCha also
we perform experiment over 10,000 random key-IV pairs to produce this result. In the last
column we provide the biases observed experimentally for the chosen IV case [14], where
the number of differences after the first round is minimum. These results can be proved in
the similar manner.

7 Probabilistic neutral bit

Before proceeding to the theoretical explanation of a probabilistically neutral bit, let us briefly
explain what a probabilistic neutral bit is and how it is used in the key recovery attack.

7.1 Key recovery attack and probabilistically neutral bits

The quarterround function used in Salsa and ChaCha is a reversible function. So, each round
of Salsa and ChaCha is reversible and from the final round matrix X (R), the matrix at any
intermediate round X (r) can be obtained by applying the reverse function of quarterround on
X (R) by R− r rounds. For example, in Salsa, the reverse function is known as ReverseSalsa,
which is as follows:

a = a ⊕ ((d + c) ≪ 18),

d = d ⊕ ((c + b) ≪ 13),

c = c ⊕ ((b + a) ≪ 9),

b = b ⊕ ((a + d) ≪ 7).

Here we discuss briefly the idea of probabilistically neutral bits and their role in the key
recovery attack on the cipher.
Probabilistically neutral bits suppose, by putting the input difference at position (i, j) of X
we produce X ′ and the forward bias εd is observed at round r (r < R) at a position (p, q),
i.e, Pr(Δ(r)

p [q] = 0) = 1
2 (1 + εd). Now, Suppose Z = X + X (R) and Z ′ = X ′ + X ′(R) are

the outputs at the end of R (R > r) rounds of the cipher. Now, let k be a key bit position. We
complement the value assigned at k for both X and X ′, producing X and X ′, respectively.

123

Proving the biases of Salsa and ChaCha in differential attack

We run the reverse algorithm on Z − X and Z ′ − X ′ by R − r rounds and achieve Y and
Y ′, respectively. We investigate the position (p, q) of Y and Y ′. Let us call the difference
Yp[q] ⊕ Y ′

p[q] to be Γp[q]. Now, if the event Γp[q] = Δ
(r)
p [q] occurs with high probability,

we call the key bit position k a probabilistically neutral bit or a PNB for this input bit (i, j)
and output bit (p, q) combination.
Actual attack after achieving a set of probabilistically neutral bits, the attacker assigns random
values to those key bit positions and try to guess the accurate values of the remaining key bits.
Suppose, for one such guess, we get the matrices X̃ and X̃ ′.Now, on Z − X̃ and Z ′ − X̃ ′, the
reverse algorithm is applied by R−r rounds let us denote the outputs by Ỹ and Ỹ ′ respectively.
The difference is investigated at position (p, q). Suppose ˜Γp[q] = ˜Yp[q] ⊕ ˜Y ′

p[q]. We call

the bias of the event ˜Γp[q] = Δ
(r)
p [q] backward bias and denote by εa . Now If the event

˜Γp[q] = 0 shows a high bias ε, the guess of the non-PNB key bits are correct. After that
we find the values of the PNBs by exhaustive search. The bias ε can be approximated by the
product of the forward and backward bias, i.e., ε = εd · εa .

Since our aim is to provide theoretical explanation only, we don’t provide here the detailed
procedure of computing the time complexity of the attack. For a detailed study of the attack
procedure and complexity calculation, one can visit the works in [1,14].

7.2 Theoretical explanation

In this section, we attempt to investigate the backward bias in the differential attack. The
set of probabilistic neutral bits is responsible for the backward bias. We do not prove the
backward bias for the entire set of probabilistic neutral bits. Rather, we pick a single bit from
the list of probabilistically neutral bits of Salsa and explain why it works as a probabilistic
neutral bit in the attack. A similar proof can be obtained for any other bit for both Salsa and
ChaCha.

In the differential attack with input difference at (7, 31) and output difference at (1, 14) in
Salsa, the probabilistically neutral bit that comes first in the list is the bit at position (12, 5).
In fact in the list of 42 PNBs given in [7], all the bits from (12, 5) to (12, 18) are there.

We show for a random matrix M that if we change the value of the key bit at position
(12, 5) to construct a matrix M ′ and then apply ReverseSalsa on both of them by 4 rounds,
then in the output, the probability that at position (1, 14) there is a difference between M and
M ′ is very low. Similar to the case of Salsa 8 rounds, in the first round we apply ReverseSalsa
at first on the rows of M .

First round in the last row, (a, b, c, d) = (M15,M12,M13,M14).Thefirst step of theReverse-
quarterround, where M15 is updated, does not involve M12. So there is no propagation of the
difference. Then, M14 is updated, where M12 comes in to play as follows:

M14 = M14 ⊕ ((M12 + M13) ≪ 13).

So, the difference transmits to the 18th bit of M14 and propagates to the next bits with
probability 1

2n as in Lemma 1. In the next step in the update of M13, in a similar manner the
difference transmits to the 14th bit of M13 and propagates to next bits with probability 1

2n .

In the final step, M12 is updated

M12 = M12 ⊕ ((M14 + M15) ≪ 7).

The difference already in the 5th bit remains there. Another difference transmits from M14.

Due to the rotation by 7 bits it moves to the 25th bit and propagates to the bits on the left.

123

S. Dey, S. Sarkar

Second round
First column in this column, (a, b, c, d) = (M0,M4,M8,M12). The first step is:

M0 = M0 ⊕ ((M8 + M12) ≪ 18).

The differences at M12 gets rotated by 18 bits and transmits to M0. So, the 23rd bit contains
a difference, which propagates towards left with probability 1

2n . And the 11th bit contains a
difference along with the bits on its left with decreasing probability.

M12 = M12 ⊕ ((M8 + M4) ≪ 13).

Since M8 and M4 do not possess any difference yet, so the differences at M12 remains at the
same positions with the same probabilities.

M8 = M8 ⊕ ((M0 + M4) ≪ 13).

Among the involved cells, only M0 contains differences. Those get rotated by 13 bits. So, the
4th bit contains a difference along with the bits on its left with gradually decreasing proba-
bility. Also, the 24th bit contains a difference along with gradually decreasing probability on
its left.
Second column in this column, (a, b, c, d) = (M5,M9,M13,M1). In the first step, M5 is
updated as:

M5 = M5 ⊕ ((M1 + M13) ≪ 18).

The difference at the 14th bit of M13 generates a difference at the 0-th bit of M5. And the
probability of propagation of this difference to the next bits is similar to Lemma 1.

Then M1 is updated as:

M1 = M1((M9 + M13) ≪ 13).

In a similarmanner as the last one, the difference transmits to the 27th bit ofM1 and propagates
in similar manner.

Next,

M13 = M13((M5 + M9) ≪ 9).

Only M5 contains some differences. Due to the rotation by 9 bits, the difference at the 0th bit
of M5 produces a difference at the 9th bit of M13. This propagates further up to some bits.
So, the 0th and 1st bit of M13 is not yet influenced by the difference. Then, in the final step:

M9 = M9((M5 + M1) ≪ 7).

Here, M5 has differences starting from the 0th bit up to few bits on the left. After rotation
by 7 bits, these produce differences at the 7th bit of M9 and on the bits on the left side of
it. Similarly M1 has differences at the 27th bit and at the bits on its left, which after being
rotated by 7 bits, move to the 2nd bit and on the left of the 7th bit of M9 So, the 0th and 1st
bit of M9 is also not influenced by difference.
Third round in the third row, (a, b, c, d) = (M10,M11,M8,M9).

d = M9 is updated with the operation

M9 = M9 ⊕ ((M11 + M8) ≪ 13).

M11 is not influenced by the difference since it is in last column. The 0th and 1st bit of
M9 is also not influenced yet. So, the only difference can transmit from M8. M8 contains
difference at position 24th and 4th along with the bits on the left side of these bits with

123

Proving the biases of Salsa and ChaCha in differential attack

gradually decreasing probability. Due to the rotation by 13 bits, these move to the 5th and
17th position. Therefore, the 0th and 1st position of M9 would have negligible effect from
the propagation of difference.
M13 in a similar method we can show that the 0th and 1st bit of M13 also is influenced by
the difference with negligible probability.
M1 also the fact that the 14th bit of M1 is not influenced by the difference can be shown
similarly.
Fourth round in this round, on the second column, (a, b, c, d) = (M5,M9,M13,M1). In the
second step, M1 is updated as:

M1 = M1 ⊕ ((M9 + M13) ≪ 13).

Up to the 3rd round there was no difference at position (1, 14). Since we know that the 0th
and 1st bit of M9 and M13 do not have any difference, therefore after being rotated by 13 bits,
they do not produce any difference at the 14th bit of M1. Therefore this bit is not influenced
by the difference. Exactly similar argument is valid for the key bits on the right side of (12, 5)
up to (12, 18). Therefore, if a few key consecutive bits starting from (12, 5) to the right side
are complemented to constructM ′, there would not be any influence on (1, 14) after applying
ReverseSalsa by four rounds.

Now, in Salsa, we apply reverseround on Z − X and Z ′ − X ′ by 4 rounds. Let us assume
that M = Z − X . So, M ′ = Z − X would have a difference from Z − X at (12, 5) and
this difference may propagate to a few bits on right. So, we can take Z ′ − X ′ to be our
M ′. Therefore, as we have shown, running 4 rounds of the ReverseSalsa on Z − X and
Z − X would have the same value at the position (1, 14). Now, running ReverseSalsa on
Z − X = X (8) basically produces X (4) and by Y we denote the same output for Z − X .
Therefore,

Y1[14] = X (4)
1 [14]. (13)

Similarly, for Z ′ − X ′ and Z ′ − X ′ we can use the same argument to show that

Y ′
1[14] = X ′(4)

1 [14]. (14)

From Eqs. (13) and (14), we can say that

Y1[14] ⊕ Y ′
1[14] = X (4)

1 [14] ⊕ X ′(4)
1 [14].

This implies, Γ1[14] = Δ
(4)
1 [14]. So, Pr(Γ1[14] = Δ

(4)
1 [14]) = 1. This justifies the reason

of the bit to be a PNB.

8 Conclusion

This work provides a deep insight of the differential attack idea against Salsa and ChaCha.
For both the ciphers, our work finds out the exact reason for the observed forward biases,
which have been the primary tool in all the differential distinguishing and key recovery attacks
for one decade. It has always been an aim of the researchers to increase the observed bias
and if possible, extend it to the next round. This theoretical explanation will help to get a
clear picture of the propagation of the bias from the beginning, which may help to find some
better distinguisher by some suitable method. In this work the theoretical justification of a
probabilistically neutral bit has also been provided. We believe that this theory may also be
helpful to improve the backward bias as well by application of some suitable techniques.

123

S. Dey, S. Sarkar

References

1. Aumasson J.P., Fischer S., Khazaei S., MeierW., Rechberger C.: New Features of Latin Dances: Analysis
of Salsa, ChaCha, and Rumba. FSE 2008, LNCS 5086, pp. 470–488 (2008).

2. BernsteinD.J.: Salsa20 specification. eSTREAMProject algorithmdescription (2005). http://www.ecrypt.
eu.org/stream/salsa20pf.html.

3. Bursztein E.: Speeding up and strengthening HTTPS connections for Chrome on Android (2014). https://
security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html.

4. Choudhuri A.R., Maitra S.: Significantly improved multi-bit differentials for Reduced Round Salsa and
ChaCha. IACR Trans. Symmetric Cryptol. 2016(2), 261–287 (2016). http://eprint.iacr.org/2016/1034.

5. Crowley P.: Truncated differential cryptanalysis of five rounds of Salsa20. IACR 2005. http://eprint.iacr.
org/2005/375.

6. Deepthi K., Singh K.: Cryptanalysis of Salsa and ChaCha: revisited. In: International Conference on
Mobile Networks and Management (2018).

7. DeyS., Sarkar S.: Improved analysis for reduced roundSalsa andChaCha.Discret.Appl.Math.227(2017),
58–69 (2017).

8. Dey S., Sarkar S.: Settling the mystery of Zr = r in RC4. Cryptogr. Commun. 11(4), 697–715 (2019).
9. Dey S., Sarkar S.: Proving the forward bias of Salsa. In: Workshop on Coding and Cryptography (2019).

https://www.lebesgue.fr/sites/default/files/proceedings_WCC/WCC_2019_paper_48.pdf.
10. Dey S., Roy T., Sarkar S.: Revisiting the design principles of Salsa and ChaCha. Adv. Math. Commun.

13(3), 689–704 (2019).
11. Ding L.: Improved related-cipher attack on Salsa20 Stream Cipher. IEEE Access 7, 30197–30202 (2019).
12. Fischer S., Meier W., Berbain C., Biasse J.F.: Non-randomness in eSTREAM Candidates Salsa20 and

TSC-4. In: Indocrypt 2006, LNCS 4329, pp. 2–16 (2006).
13. Isobe T., Ohigashi T., Watanabe Y., Morii M.: Full plaintext recovery attack on broadcast RC4. In: FSE

2013, LNCS 8424, pp. 179–202 (2013).
14. Maitra S.: Chosen IV cryptanalysis on Reduced Round ChaCha and Salsa. Discret. Appl. Math. 208,

88–97 (2016).
15. Maitra S., Paul G.,MeierW.: Salsa20 Cryptanalysis: NewMoves and Revisiting Old Styles.WCC (2015).

http://eprint.iacr.org/2015/217.
16. Mantin I., Shamir A.: A practical attack on broadcast RC4. In: FSE, LNCS 2355, pp. 152–164 (2001).
17. Neves S., Araujo F.: An observation on NORX, BLAKE2, and ChaCha. Inf. Process. Lett. (2019). https://

doi.org/10.1016/j.ipl.2019.05.001.
18. Sengupta S., Maitra S., Paul G., Sarkar S.: (Non-)random sequences from (non-)random permutations—

analysis of RC4 stream cipher. J. Cryptol. 27(1), 67–108 (2014). http://eprint.iacr.org/2011/448.
19. Shi Z., Zhang B., Feng D., Wu W.: Improved key recovery attacks on Reduced-Round Salsa20 and

ChaCha. In: ICISC, LNCS 7839, pp. 337–351 (2012).
20. Tsunoo Y., Saito T., Kubo H., Suzaki T., Nakashima H.: Differential Cryptanalysis of Salsa20/8. SASC

(2007). http://www.ecrypt.eu.org/stream/papersdir/2007/010.pdf.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://www.ecrypt.eu.org/stream/salsa20pf.html
http://www.ecrypt.eu.org/stream/salsa20pf.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
http://eprint.iacr.org/2016/1034
http://eprint.iacr.org/2005/375
http://eprint.iacr.org/2005/375
https://www.lebesgue.fr/sites/default/files/proceedings_WCC/WCC_2019_paper_48.pdf
http://eprint.iacr.org/2015/217
https://doi.org/10.1016/j.ipl.2019.05.001
https://doi.org/10.1016/j.ipl.2019.05.001
http://eprint.iacr.org/2011/448
http://www.ecrypt.eu.org/stream/papersdir/2007/010.pdf

	Proving the biases of Salsa and ChaCha in differential attack
	Abstract
	1 Introduction
	2 Structure
	3 Some mathematical results
	4 Few points about the proof
	5 Proof of the forward bias of Salsa
	5.1 First round
	5.2 Second round
	5.3 Third round
	5.3.1 First column
	5.3.2 Second column
	5.3.3 Fourth column

	5.4 Fourth round

	6 Proof of the forward bias of ChaCha
	6.1 First Round
	6.2 Second round
	6.3 Third round

	7 Probabilistic neutral bit
	7.1 Key recovery attack and probabilistically neutral bits
	7.2 Theoretical explanation

	8 Conclusion
	References

